Zobrazit minimální záznam

dc.contributor.authorČampulová, Martina
dc.date.accessioned2021-06-28T00:02:14Z
dc.date.available2021-06-28T00:02:14Z
dc.date.issued2018
dc.identifier43915093
dc.identifier.issn1211-8516 Sherpa/RoMEO, JCR
dc.identifier.urihttps://repozitar.mendelu.cz/xmlui/handle/20.500.12698/1360
dc.description.abstractData smoothing is often required within the environmental data analysis. A number of methods and algorithms that can be applied for data smoothing have been proposed. This paper gives an overview and compares the performance of different smoothing procedures that estimate the trend in the data, based on the surrounding noisy observations that can be applied on environmental data. The considered methods include kernel regression with both global and local bandwidth, moving average, exponential smoothing, robust repeated median regression, trend filtering and approach based on discrete Fourier and discrete wavelet transform. The methods are applied to real data obtained by measurement of PM10 concentrations and compared in a simulation study.en
dc.format453-463
dc.publisherMendelova univerzita v Brně
dc.relation.ispartofActa Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
dc.relation.urihttps://doi.org/10.11118/actaun201866020453
dc.rightsCC BY-NC-ND 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectData smoothingen
dc.subjectEnvironmental dataen
dc.subjectParticulate matter PM10en
dc.subjectTrend filteringen
dc.titleComparison of Methods for Smoothing Environmental Data with an Application to Particulate Matter PM10en
dc.typeJ_ČLÁNEK
dc.date.updated2021-06-28T00:02:14Z
dc.description.versionOA
local.identifier.doi10.11118/actaun201866020453
local.identifier.scopus2-s2.0-85047624015
local.number2
local.volume66
local.identifier.obd43915093
local.identifier.e-issn2464-8310
local.contributor.affiliationPEF


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

CC BY-NC-ND 4.0
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je CC BY-NC-ND 4.0