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Data smoothing is often required within the environmental data analysis. A number of methods and 
algorithms that can be applied for data smoothing have been proposed. This paper gives an overview 
and compares the performance of different smoothing procedures that estimate the trend in the data, 
based on the surrounding noisy observations that can be applied on environmental data.
The considered methods include kernel regression with both global and local bandwidth, moving 
average, exponential smoothing, robust repeated median regression, trend filtering and approach 
based on discrete Fourier and discrete wavelet transform. The methods are applied to real data 
obtained by measurement of PM10 concentrations and compared in a simulation study.
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INTRODUCTION
Univariate data smoothing techniques, which 

permit the trend in the data to be estimated from 
noisy observations, are frequently applied in many 
environmental applications (Holešovský et al., 
2017; Čampulová et al., 2017; Lee and Kang, 2015; 
Hutchinson, 1995; Cook and Peters, 1981). 

Smoothing methods commonly applied for 
environmental data include moving average (Kaneko 
and Funatsu, 2015), Savitzky-Golay smoothing 
(Sankaran et al. 2010; Kaneko and Funatsu, 2015), 
smoothing splines (He et al., 2016), kernel regression 
techniques with global bandwidth (Henry et al., 2009) 
or nonlinear smoothers (Kafadar and Morris, 2002). 

Time series data is often smoothed using 
exponential smoothing based algorithms (Holt, 
1957), regression-based approaches (Bowerman et al. 
2005), Kalman Filters (Tsay, 2005) or decomposition 
methods (Hyndman and Koehler, 2008; Tsay, 2005), 
which are useful also for the prediction.

 A number of methods are parametrised by 
a smoothing parameter which gives a rate of exchange 

between residual error and local variation. The choice 
of the smoothing parameter, which influences 
the final estimate of the smoothing line, is a crucial 
part of the analysis. Depending on the value of 
the parameter the smoothing line can vary from noisy 
function exactly explaining all data points to smooth 
function. If the value of the smoothing parameter 
is overestimated the data is over-smoothed and 
the detailed local information is lossed. On the other 
hand, underestimating the smoothing parameter 
results in disturbation of the general trend contained 
in the data by local features of noise. 

The selection of optimal bandwidth is even more 
complicated in a case where the data contains 
intervals with both relatively low and relatively high 
variability. In such a case using a greater value of 
the smoothing parameter results in a better fit of flat 
parts and under-fitting of segments with increased 
variability of the data, while smoothing line based on 
a smaller value of the smoothing parameter over-fits 
the flat parts and fits well the intervals with relatively 
high variability of the data. This is a general problem 
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associated with smoothing environmental data that 
is influenced by many different factors.

To overcome the problem of unsatisfactory local 
predictive accuracy of the smoothing line, the various 
methods based on variable smoothing parameter 
approach have been proposed. Methods derived 
from the classical smoothing methods and improved 
by substituting global smoothing parameter by local 
smoothing parameter include e.g. kernel regression 
based on local bandwith (Herrmann, 1997; Fann et al., 
2011) or adaptive spline smoothing (Wang et al., 2013; 
Storlie et al., 2010). A different approach adopted by 
wavelet methods (Alsberg et al., 1997; Walczak and 
Massart, 1997) is based on the idea that a function 
representing the trend in the data in a given time 
instant can be expressed as a sum of basis functions 
of different scale. 

Considering the problem of smoothing 
environmental data relatively little attention has 
been paid to the application of signal filtering 
methods which are often referred to as „data 
filtering“ or „noise denoising“ procedures. 

Data filtering based on splines can be found 
in (Unser, 1999). Another method suggested 
for signal data filtering and often used for time 
series smoothing is median filtering (Tukey, 
1977). In (Davies et al. 2004) robust repeated 
median regression, which estimates the unknown 
regression function using repeated medians 
(Siegel, 1982), is suggested. Such estimate improves 
median filtering by approximating underlaying data 
trend in a moving time window by a linear trend. 
In (Fried, 2004) robust regression suggested in 
(Davies et al., 2004) is further modified by including 
rules for outlier detection and treatment to increase 
the robustness of the method. Another procedure, l1 
trend filtering that is commonly used in signal data 
processing, has been proposed in (Kim et al., 2009).

Specific class of methods for signal data processing 
are change-point detection algorithms (Chen and 
Gupta 2012; Bleakley and Vert, 2011; Neubauer 
and Vesely 2011; Zhang et al., 2015) that are used to 
detect abrupt shifts and sharp changes in the mean 
values of the analysed data. However, considering 
environmental data, jump changes are not very 
common and ususally correspond to manipulation 
with the measuring instrument which means that 
the time of this change is known.

Of course, advanced methods for processing 
signal data that can be used for data smoothing 
are still being proposed. In (Ridel et al., 2015) a fast 
least-square fitting method of parabolic cylinders 
for smoothing noisy data has been introduced. An 
effective iterative method for approximation of 
underlying data trend based on error measure has 
been presented in (Levin, 2015). A method that is 
based on convex optimization and that partitions 
the data into segments where the polynomail 
structure of the data is assumed was introduced 
recently in (Rajmic et al., 2017). 

In (Tibshirani, 2014) the trend filtering estimates 
were compared with smoothing splines and their 

alternative with better local adaptivity, so called 
locally adaptive regression splines (Mammen and 
Geer, 1997). It was shown that trend filtering estimates 
significantly outperform smoothing splines in local 
adaptivity. Considering locally adaptive regression 
splines the adaptivity properties were shown to be 
comparable. However, using trend filtering a lower 
computational complexity is achieved. 

The aim of this paper is to present and give 
overview and comparison of the performance of 
different approaches for smoothing environmental 
data and to provide some insight to specialised 
operators. The considered methods include moving 
average, simple exponential smoothing (Holt, 1957), 
kernel regression with local (Herrmann, 1997) 
and global (Gasser et al., 1991) bandwidth, robust 
repeated median regression (Fried, 2004), l1 trend 
filtering (Kim et al., 2009) and smoothing based on 
discrete Fourier (Proakis, 1995) and discrete wavelet 
transform (Donoho and Johnston, 1995). 

The present paper deals with comparison of 
kernel regression because it was implemented as 
a data smoothing method within outlier detection 
algorithms described in (Holešovský et al., 2017; 
Čampulová et al., 2017). Robust repeated median 
regression was selected because it represents signal 
filtering method which permits (analogous to kernel 
regression with local bandwidth) the smoothing 
parameter to be estimated locally. DWT was 
chosen because its principle is different from kernel 
regression approach and because the coefficients 
from DWT are estimated locally. Moving average 
method and exponential smoothing represent 
classical methods used for smoothing time series 
and l1 trend filtering is frequently used for signal data 
processing. Fast Fourier transform is a commonly 
used tool for frequency filtering. 

The methods are applied to smooth hourly 
measurements of mass concentration of particulate 
matter PM10. Note that the methods are based on 
different models, which means they are hardly 
comparable. For this reason their performance is 
compared using simulated data.

MATERIALS AND METHODS
In this section the selected methods for smoothing 

measumenents of variable Y observed at n discrete 
time instants t are shortly described. 

Moving average method
Moving average method estimates the data trend 

in a given time instant as the average of the noisy 
observations on a local segment. Supposing 
the measurements Y(1), ..., Y(n) and a parameter h 
called window size, the smoothed data m(t) in time 
t are given by

( ) ( )1
.

2 1

j h

j h

m t Y t j
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=−
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It is obvious that the amount of observations 
for local averaging is determined by the choice 
of smoothing parameter h. Here the parameter is 
chosen using the approach described in (Barsanti 
and Gilmore, 2011).

Exponential smoothing
Whereas moving average method smooths 

the data in a given time instant using a fixed 
number of the most recent and equally weighted 
observations, using exponential smoothing all past 
observations are considered and exponentially 
weighted. The exponential weights to individual 
observations are assigned in a decreasing order 
such that the influence of the distant observations 
to the estimate in a given time instant diminishs 
exponentially over time.

Given the measurements Y(t) in time t, where 
t = 2, ..., n, the smoothed data m(t) in time t are given 
by (Paul, 2011)

( ) ( ) ( ) ( ) (1 1 1 , 0,1ˆm t Y t m tα α α= − + − − ∈ 〉

where α is a smoothing parameter determining 
the weight assigned to the most recent measurement 
and ( )ˆ 1m t −  is the estimate of smoothed data in time 
t – 1. As can be seen, the estimate of a smoothed 
data in a given time t is based on the observation 
corresponding to time where the estimate is 
computed and all past observations whose weights 
decrease exponentially over time. As for every 
smoothing parameter the choice of α determines 
the quality of the estimate. Here the parameter is 
chosen using a trial and error approach (Paul, 2011) 
such that mean squared error (MSE) is minimised. 

Kernel regression
Kernel regression is a nonparametric smoothing 

technique which estimates the trend in the data 
(regression function) at a given time instant 
as a weighted mean of the surrounding noisy 
observations. The weights are determined by 
the choice of kernel function and the amount of 
noisy observations used for averaging is defined by 
a parameter called bandwidth.

Given the measurements Y(t𝑖) observed at n 
discrete time instants t𝑖, i = 1, ..., n, lying in the interval 
[a, b] , the heteroscedastic regression model can be 
written in the form (Herrmann, 1997)

( ) ( ) ( ) ( ) ,                 1, , ,i i i iY t m t t t i nσ ε= + = … ( ) ( ) ( ) ( ) ,                 1, , ,i i i iY t m t t t i nσ ε= + = …

where ε(t𝑖) are independent and identically 
distributed (i.i.d.) random errors with zero mean and 
unit variance and σ(t𝑖) is standard deviation function 
expressing the variance of Y(t𝑖). The functions m(t𝑖) 
and σ(t𝑖) are supposed to meet standard regularity 
assumptions which are given e.g. in (Herrmann, 1997).

Among various available estimators of 
the regression function m(t𝑖) (Wand and Jones, 1995) 

Gasser-Muller convolution estimator (Gasser and 
Müller, 1984) is preferred. This estimator is given by
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1

1

1
,

l

l

xn

t i
t tl x

t u
m t h Y t K du

h h
−

=

 −
=   

 
∑ ∫

where ht is smoothing parameter called bandwidth 
in point t and limits of integration are given by x0 = a, 
xl = 0.5(tl + 1 + tl) for l = 1, ..., n – 1, xn = b. K denotes 
kernel function of order k, k ≥ 2 (Gasser et al., 1985). 

For regression function estimation the Epanechnikov 
kernel (Gasser et al., 1985) which has the property 
of optimal kernels and which is commonly used in 
practise is preferred.

The smoothing parameter can be estimated 
both locally and globally. Considering global 
bandwidth the plug-in estimate (Gasser et al., 1991) 
of the parameter is preferred. Such an estimate has 
lower variability than cross-validation estimators 
and is constructed such that  Mean Integral Squared 
Error (MISE) is minimised. Note that since MISE is 
defined as the integral over non-negative function 
(Herrmann, 1997), the order of integration and 
mean can be reversed and denoted as Integral Mean 
Squared Error (IMSE). 

The optimal local bandwidth, which is defined 
as the minimizer of the Mean Squared Error (MSE) 
(Herrmann, 1997) of the estimate of the regression 
function is estimated using local plug-in algorithm 
(Herrmann, 1997). The algorithm is iterative. During 
the first (k + 1)(2k + 1) iterations a sequence of global 
bandwidths minimizing the Integral Mean Squared 
Error (MISE) (Herrmann, 1997) is generated and 
local bandwidth minimizing MSE is estimated in 
the last iteration. 

Robust repeated median regression
Robust repeated median regression estimates 

the smoothed data in a given time instant by a linear 
trend which is estimated using repeated medians 
based on the surrounding noisy observations. 

Given the measurements Y(1), ..., Y(n), robust 
repeated median regression is based on model 
(Gather, Fried, 2004)

( ) ( ) ( ) ( ) ( ) ,                 1, ,Y t m t t t t i nσ ε η= + + = …
 

( ) ( ) ( ) ( ) ( ) ,                 1, ,Y t m t t t t i nσ ε η= + + = …

where σ(t) denotes standard deviation expressing 
the variance of Y(t) and ε(t) are random errors with 
zero mean and unit variance. Although that σ and 
ε have the same interpretation as σ and ε for kernel 
regression, the algorithm for their estimation 
is different from the algorithm used in kernel 
regression estimation. Function ( )tη  represents 
the outlier process which is responsible for sudden 
changes in mean and variability of the analysed 
variable Y. Note that the outlier process is zero most 
of the time and occasionaly exhibits large absolute 



456 Martina Čampulová 

values. To estimate the smoothed data, σ(t) and ( )tη  
are supposed to vary smoothly in time (Fried, 2004). 

Supposing a parameter ht > 0 the robust repeated 
median regression estimate of the smoothed data 
within a smoothing window {t – ht, ..., t + ht}, 0 < ht ≤ t 
is given by (Fried, 2004)

( ) 1 2,       ,t t
t tm t i i i h hβ β+ = + = − …

 
( ) 1 2,       ,t t

t tm t i i i h hβ β+ = + = − …

where 1
tβ  and 2

tβ  is intercept and slope of 
the regression line within a smoothing window 
{t – ht, ..., t + ht}. Given a set of observation 
Y(t – ht), ..., Y(t + ht) corresponding to window 
{t – ht, ..., t + ht}, the estimate of parameters 1

tβ  and 
2
tβ  is defined by (Siegel, 1982)

{ } ( ){ }1 2,med ) ,ˆ ˆ
t t

t t
i h h Y t i iβ β∈ − …= + −
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To improve the robustness of the method the fit in 
the current time window is extrapolated to the next 
time and used for the evaluation of the outlyiness of 
the next measurement. The outlyiness of the next 
measurement is evaluated by comparing the size 
of exrapolating residual with the appropriately 
chosen multiple of the estimate of standard deviation 
corresponding to observations in the current window 
(Fried, 2004). In case that the next observation is 
evaluated as outlier it is trimmed or shrinked to 
prevail its impact on the local fit. This way the outliers 
are detected and treated prior to moving smoothing 
window. 

The residuals are also used for the detection of 
level shifts. As described in (Fried, 2004), in case 
that level shift occurs in the smoothing window, 
the algorithm for computing the fit is restarted.  

The procedure for robust repeated regression 
together with the rules for outlier and shift detection 
is described in detail in (Fried, 2004). 

The window width ht can be chosen globally or 
locally based on the adaptation described in (Gather 
and Fried, 2004). Here the recommendations given 
in (Gather and Fried, 2004) and adaptation algorithm 
(Borowski and Fried, 2011) are preferred.  

Data smoothing using discrete Fourier 
transform 

The principle of data smoothing using discrete 
Fourier transform (DFT) is the conversion of 
observed values from its original (usually time) 
domain  to a representation in the frequency 
domain, where significant frequencies occuring in 
the observations are filtered. Subsequently the data 
is transferred back to time domain.

The transform is based on expressing 
the observations y(0), ..., y(n – 1), where n is 
supposed to be a power of two, as a weighted sum of 
orthonormal basis functions. These basis functions, 

which are formed by sine and cosine functions of 
different frequencies, are given by

( ) ( ) ( ) ( )cos 2 / , sin 2 /k kc i ki n s i ki nπ π= =

where i = 1, ..., n – 1 and parameter k = 0, ..., n / 2 
determines the frequency. Using the Euler’s formula 
the discrete Fourier transform of the observations 
y(t), t = 0, ..., n – 1, is given by (Proakis, 1995)

( ) ( )
1

2 /

0

n
j ki n

i

X k y i e π
−

−

=

=∑

and the conversion back to time domain is 
performed using the relation 

( ) ( )
1

2 /
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−

=
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where j is complex unit. The principle of data 
smoothing is based on the assumption that high values 
of transform coefficients correspond to important 
changes in the sequence of the observations while 
low values of wavelet coefficients correspond to 
random errors. To suppress the random errors 
the transform coefficients are thresholded. 

The idea of thresholding is to remove transform 
coefficients that are smaller than appropriately 
chosen threshold δ. In practise the thresholding 
is performed using soft thresholding function or 
hard thresholding function. Hard thresholding 
function sets all coefficients smaller than threshold 
value to zero and the remaining coefficients are 
left unchanged. Using soft thresholding function 
the coefficients below the threshold value are set 
to zero and the values of remaining coefficients are 
reduced. 

Of course, the choice of the threshold value is 
important. Here the universal threshold, which 
belongs to widely used ones and which is easy to 
implement, is preferred. The universal threshold is 
defined as (Donoho, Johnstone 1995)

( )2logT nσ=

where σ represents the noise standard deviation 
which can be estimated as the absolute median 
deviation of the transform coefficients. 

Data smoothing using discrete wavelet 
transform

The principle of data smoothing using discrete 
wavelet transform (DWT) is analogous to data 
smoothing using DFT.  It means that the observed 
values are converted from its original domain to 
a time-frequency domain, subsequently significant 
frequencies are thresholded and finally the data is 
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transferred using inverse transform back to time 
domain.

Similarly to DFT the DWT is based on expressing 
the observations y(t), i = 1, ..., n, as a weighted 
sum of orthonormal basis functions of different 
frequencies.  A contrary to DFT, where the base of 
functions is formed by sine and cosine functions, 
several wavelet families, forming the base of 
functions exist. These wavelet families – basis 
functions of the space L2(ℝ) (the space of all 
measurable functions f(t) satisfying ( ) 2

f t dt <∞∞
−∞∫  , 

where ℝ denotes the set of real numbers), which 
are concentrated in time, are derived from parental 
wavelets, namely from mother wavelet ( ) ( )2t Lψ ∈   
and father wavelet ( ) ( )2t Lφ ∈   (Meyer, 1992). 
The relations, based on which the child wavelets 
(forming the orthonormal basis of space L2(ℝ)) are 
derived from parent wavelets, can be written as 

( ) ( ) ( ) ( ), ,2 2 , 2 2j j j j
j s j st t s t t sψ ψ φ φ= − = −

where s ϵ ℤ (ℤ denotes the set of integers) 
is parameter of time shift and j is parameter 
corresponding to scale. 

Given the parameter J ϵ ℤ determining 
the maximum resolution, the sequence of 
measurements y(t) ϵ L²(ℝ) can be expressed as

( ) ( ) ( )0, 0, , ,
0 ,

,s s j s j s
s j J j s

y t c t d tφ ψ
∈ < < ∈ ∈

= +∑ ∑ ∑
Z Z Z

 (1)

where discrete wavelet coefficients representing 
the weights of basis functions are given by 

( ) ( ) ( ) ( ), , , , ,  .j s j s j s j sc y t t dt d y t t dtφ ψ= ∫ = ∫

Using the relation (1) the sequence of observations 
y(t), t = 1, ..., n, can be expressed as a “smooth” 
(approximative) part generated by child wavelets 
derived from father wavelet and detailed part 
generated by child wavelets derived from mother 
wavelet. Therefore the coefficients cj,s are called 
aproximative while the coefficients are called dj,s 
detailed coefficients.

For the analysis presented in this paper 
orthonormal Daubechies 8 (db8) wavelets 
(Daubechies, 1992) were used.

The DWT as well as backward reconstruction can 
be realized in 0(n) steps using algorithm (Mallat, 
1998), which is based on lowpasss and highpass 
filters. The thresholding of DWT coefficients, 
which is performed analogous to thresholding of 
coefficients obtained using DFT, is applied only for 
detailed coefficients. 

Trend filtering
Trend filtering estimate belonging to 

nonparametric regression estimates is constructed 

based on penalised least squares criterion, where 
the penalty term penalizes the changes in the discrete 
derivative of the estimate. The penalty term is based 
on l1 norm, which encourages sparsity of the discrete 
derivatives.

Given the measurements Y(1), ...,Y(n) observed at n 
discrete equally spaced time instants (the extension 
for arbitrarily spaced time instants is described in 
(Tibshirani, 2014), the regression model can be 
written as (Kim et al., 2009)

( ) ( ) ( ) ,                 1, ,Y t m t t i nε= + = …
 ( ) ( ) ( ) ,                 1, ,Y t m t t i nε= + = …

where ε(t) are independent errors. Denoting 
Y = (Y(1), ..., Y)(n)) and supposing an integer 
k ≥ 0, the k th order trend filtering estimate of 
m = (m(1), ..., m)(n))T can be written in the form 
(Kim et al., 2009)

( )12
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∈
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where λ ≥ 0 is a tuning parameter and D(k + 1) 
represents discrete difference operator. As can be 
seen, the aim is to estimate the parameters such that 
the penalised sum of least squares is minimised. 

For k = 0, ( ) ( )1 1n xnD −∈  is the first-order difference 
matrix 

( )1

1 1 0 0 0

0 1 1 0 0

0 0 0 1 1

D

− 
 − 
 =
 

− 
  



  



and the 0th order trend filtering reduces 
to the 1-dimensional fused lasso estimator 
(Tibshirani et al., 2005), which is also called 
1-dimensional total variation denoising (Rudin et al., 
1992). 

For k > 0 the operator D(k + 1) is defined recursively by 

D(k + 1) = D(1) D(k)

Since the penalty term penalizes the discrete 
(k + 1)st derivative of the vector m, the resulting 
trend filtering estimate m̂  has the structure of 
a piecewise polynomial of order k with data-based 
adaptive choice of knots. 

The trend filtering estimate m̂  can be found using 
a Primal-Dual Interior-Point Method (Kim et al., 
2009) or using a path algorithm (Tibshirani, Taylor, 
2011) which is preferred here. 

Software
The computation was performed in the software 

R, v. 3.3.1, using packages „lokern“ (Herrmann, 
2014), „robfilter“ (Fried et al., 2014), „smooth“ 
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(Svetunov, 2017), „genlasso“ (Taylor and Tibshirani, 
2014) and „waveslim“ (Whitcher, 2015).

Data
The smoothing methods are applied to hourly 

mass concentrations of atmospheric aerosol 
(particulate matter, PM) with aerodynamic diameter 
of particles smaller than 10 µm, namely PM10. 
The concentrations of PM10 were recorded with time 
resolution 1 hour at 5 monitoring stations situated 
in Brno, Czech Republic and operated by Brno City 
Municipality (BCM). The analysed datasets were 
provided by Brno City Municipality. 

Brno is the second largest city of the Czech 
Republic with population of 430,000 inhabitants, 
and thus represents an area with significant air 
pollution mostly originating from residential heating, 
traffic and industrial sources. For the purpose of 
the illustration of the performance of the methods, 
observations measured at station Lany were 
selected. The monitoring station Lany is located 
on the southern edge of the Bohunice housing 
estate. There is a motorway leading 450 m south 
from the location point and the surroundings of 
the station consists mostly of apartment buildings 
and full-grown vegetation. 

As shown in (Hrdlickova et al., 2008; Hübnerová and 
Michálek, 2014), the concentrations of the particulate 
matter is influenced by numerous factors including 
specific days of the week, heating season, cloud cover 
and meteorological conditions (temperature, relative 
humidity). Continuous monitoring of chemical 
composition and concentrations of PM10 is important 
for air pollution investigation.

RESULTS AND DISCUSSION

Real data
As described in section Data, the PM10 

concentrations were recorded at 5 different 
monitoring locations. For a reasonable graphical 
visualization of the results the reduction of 

the extensive range of the data is needed. For this 
reason in this paper the concentration is paid only on 
data from Lany station and the period from October 
9th to October 30th 2016. The corresponding 
sequence of measurements contains evidently 
outlying values and can be thus considered as 
a representative segment of the observations. 

The analysed concentrations of PM10 aerosols are 
illustrated in Fig. 1, which shows that several steady 
increases and sharp declines in PM10 concentration 
occur over the studied period. As already 
mentioned, a few observations obviously deviated 
from the other measurements are present in the data 
during the studied  measurement  period. 

Manual data control performed by specialised 
operators from Council of the City of Brno 
stated that all changes in the variability of PM10 
concentrations are associated with a change in 
meteorological conditions.  The only exception 
are four measurements in the night from the 21st to 
22nd of October, which were evaluated as invalid, 
because they show large and during night hours 
very unlikely deviations from the rest of the values. 
However, inspection of the station logbook did not 
clarify the reason for the presence of these outliers. 

The data presented in Fig. 1 were smoothed 
using the methods presented in section Materials 
and methods. As already described, individual 
methods are parametrised by a parameter specific 
to the corresponding methodology. Remember that 
the approaches used for the selection of individual 
parameters were described in the section Materials 
and methods. For computing moving average 
estimate several different window sizes were 
considered. The results presented in Fig. 2 are based 
on window width h = 25. 

The PM10 concentrations together with 
the smoothing lines obtained using individual 
methods are visualised in Fig. 2. All data was analysed 
together, however, for graphical visualisation of 
the results the considered time period was partitioned 
into several segments and corresponding estimates 
were visualised in individual graph with different 

1: Concentrations of PM10 aerosols
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range of y-axis. Since each graph corresponds to 
relatively short time interval the observations are 
plotted against the index of measurements. 

As the figure shows the results obtained using 
trend filtering and kernel regreression based on both 
local and global bandwidth are quite comparable. It 
can also be seen that the variability of smoothing 
lines (considered for each smoothing line 
separately) obtained using exponential smoothing, 
kernel regression, trend filtering and DWT 
adapts to the data better than using the remaining 
methods. This phenomenon is obvious especially 
in local extremes of PM10 concentrations where 
the smoothing lines have sharp peaks.

The figure illustrates that the smoothing lines 
obtained using trend filtering and kernel regression 
vary from noisy curve detaily explaining variability 
in the data to smooth curve in time instants where 
the variability of the data is relatively small. While 
the estimate of the smoothed data based on DFT is 
quite variable, the smoothing lines obtained using 
moving averages and robust repeated median 
regression appear to be realively smooth. 

It can also be seen that the DWT based estimate is 
most influenced by outlier observation corresponding 
to index = 308. Inspecting the segment corresponding 
to index 430 – 470, where several outlying 
observations are present, it can be concluded 
that moving average method and robust repeated 

median regression does not at all appear to be 
influenced by outliers.

Simulated data
To compare the performance of individual 

smoothing methods two simulation studies were 
performed. For both studies the data was simulated 
based on the function defined on the interval 
[0 ; 0.85] and visualised in Fig. 3 together with 
the smoothing residuals generated from normal 
distribution with zero mean and standard deviation 
σ, where σ = 0.2, 0,3, ..., 0.8. For each value of σ 500 
replicates was used.  

The first simulation study was performed on 
datasets free of ouliers. However, for the purpose of 
the second simulation study six intentional outliers 
were assigned at random positions in the data set. 
These outliers were generated from the normal 
distribution N (ky (xi), σ²), where k was generated 
from uniform distribution unif (3,6).

The simulated data was smoothed using 
the methods described in section Materials and 
methods and the smoothing parameters were 
estimated based on approaches introduced in 
the description of individual methods. Besides 
that different values of the smoothing parameters 
were tested. However, with regards to the amount 
of methods being compared only the results 
based on smoothing parameters chosen using 
approaches given in section Materials and methods 

2: Concentrations of PM10 aerosols together with the smoothing lines obtained using: moving average (ma), exponential smoothing (exp), 
local kernel regression (l. kernel), global kernel regression (g. kernel), robust repeated median regression (rrmr), trend filtering (trend f.), discrete 

Fourier transform (DFT) and discrete wavelet transform (DWT)
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(which resulted in the best results) were presented. 
Specifically, the moving average method was 
performed using window size of length 25.

On the base of (Tibshirani, 2014), the performance 
of the smoothing procedures was evaluated by 
average squared error, which is defined as 

( ) ( )( )2

1

1 ˆ
n

i i
i

m x y x
n

=

−∑

where    (xi) represent the smoothed data estimate 
and y(xi) is the original function.

The mean of average squared error obtained using 
different smoothing methods is plotted against 
the constant σ in Fig. 4 for the first simulation study 
and in the Fig. 5 for the second simulation study 
including outliers. 

As the Fig. 4 and Fig. 5 show, the best results were 
obtained using kernel regression based on both 

local and global bandwidth, trend filtering and 
the moving average method. As expected, higher 
precision of the smoothing methods (smaller 
average mean squarred error) was achieved by 
applying the procedures on the datasets free 
of outliers. It can also be seen that the average 
squared error increases with increasing variance of 
the residuals used for the generation of the datasets 
for all presented procedures. 

While the precision obtained using kernel 
regression, trend filtering and moving average 
is quite comparable, the results obtained using 
the remaining methods differ. Considering datasets 
free of outliers and σ > 0.5, the least accuracy was 
obtained using exponential smoothing, DWT and 
DFT based approach. As the Fig. 5 shows, the same 
conclusion can be stated for datasets containing 
outliers. 

The results obtained using DFT was expected, 
since Fourier transform assumes periodic signals, 

3: Function used for the simulation studies

4: The results of the first simulation study: The mean of average squared error obtained using different smoothing methods plotted against 
the constant . The smoothing methods are: moving average (ma), exponential smoothing (exp), local kernel regression (l. kernel), global kernel 
regression (g. kernel), robust repeated median regression (rrmr), trend filtering (trend f.), discrete Fourier transform (DFT), discrete wavelet 

transform (DWT)

m̂
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which is not true for the data presented in this paper. 
The violation of the periodicity assumption results 
in a bad fit of the smoothed curves. 

Note that the analysis of a data file containing 
outliers is quite often problematic. Considering 
e.g. DWT, the outliers create significant detail 
coefficients at finest scale, which means that they 
cannot be simply thresholded. The situation 
with DFT is similar, since the outliers destroy 
the spectrum. 

Based on the results obtained by analysing real 
and simulated data it can be concluded that the best 
results were obtained using kernel regression 
and trend filtering. The reason of this fact is that 
the corresponding smoothing lines adapt to the data 

better than the smoothing lines estimated using 
remaining procedures. Also the average squared 
errors computed based on the smoothing lines 
obtained using kernel regression and trend filtering 
are relatively small.  

Of course the quality of the estimates is 
significantly influenced by the choice of smoothing 
parameters and different selection of the parameter 
values may result in more or less smooth estimates of 
the data trend. As already described, the presented 
results are based on smoothing parameters chosen 
using the approaches given in section Materials 
and methods. However, it was verified that by using 
smoothing parameters values close to the proposed 
ones the comparable results are obtained.

5: The results of the second simulation study: The the mean of average squared error obtained using different smoothing methods plotted 
against the constant . The smoothing methods are: moving average (ma), exponential smoothing (exp), local kernel regression (l. kernel), global 

kernel regression (g. kernel), robust repeated median regression (rrmr), trend filtering (trend f.), discrete Fourier transform (DFT), discrete 
wavelet transform (DWT)

CONCLUSION
This paper presents the overview and comparison of different smoothing methods that can be 
used to smooth environmental data. The considered methods, which are applied to smooth PM10 
concentrations and compared in a simulation study, include kernel regression with both local and 
global bandwidth, robust repeated median regression, trend filtering, moving average, discrete 
Fourier transform approach, discrete wavelet transform approach and exponential smoothing.
It was shown that the considered methods differ in their sensitivity to outliers and adaptivity to the data. 
It is known that outliers, the observations significantly deviated from the other measurements, may 
have a signifficant effect on data evaluation and modelling. The outliers occur in large environmental 
datasets quite often and their presence might result from numerous experimental errors, natural 
variability of the analysed variable, unusual experimental conditions or from abnormal behaviour 
of the observed variable. For this reason, the choice of the data smoothing technique depends on 
the application and requirements of the analyst.
Considering the adaptivity to the data and precision evaluated based on mean squared error the best 
results were obtained using kernel regression and trend filtering. 
Of course the shape of all smoothing lines depends on the choice of parameters determining 
the amount of observations for local smoothing. As already described the results presented here were 
obtained using concrete values of smoothing parameters. However, by using smoothing parameter 
values close to the proposed ones comparable results are obtained. 
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