dc.contributor.author | Kovárník, Richard | |
dc.contributor.author | Janová, Jitka | |
dc.date.accessioned | 2025-08-12T02:03:04Z | |
dc.date.available | 2025-08-12T02:03:04Z | |
dc.date.issued | 2025 | |
dc.identifier.issn | 1574-9541 Sherpa/RoMEO,
JCR | |
dc.identifier.uri | https://repozitar.mendelu.cz/xmlui/handle/20.500.12698/2105 | |
dc.description.abstract | The National Forest Inventory (NFI) of the Czech Republic provides essential data for forest management but requires significant time and resources. This study highlights the critical role of validating Sentinel-2-based machine learning models against real NFI data to ensure their reliability for forest monitoring. While satellite-based models offer a cost-effective alternative, their practical applicability depends on rigorous validation. We applied four commonly used machine learning models-Classification and Regression Trees, Random Forest, Support Vector Machine, and Naive Bayes-to Sentinel-2 imagery to estimate forest cover conditions. The Random Forest model achieved the highest overall accuracy (98.3 %). By systematically comparing model predictions with official NFI data, we address a key gap in remote sensing applications: the need for real-world validation beyond training datasets. Our findings demonstrate that properly validated Sentinel-2-based models can enhance large-scale forest monitoring, reducing the financial and labor burdens of traditional field surveys while ensuring data accuracy for sustainable forest management. | en |
dc.format | 103133 | |
dc.publisher | Elsevier Science BV | |
dc.relation.ispartof | Ecological Informatics | |
dc.relation.uri | https://doi.org/10.1016/j.ecoinf.2025.103133 | |
dc.rights | CC BY 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Machine learning | en |
dc.subject | Remote sensing | en |
dc.subject | Data science | en |
dc.subject | Forest management | en |
dc.subject | National forest inventory | en |
dc.subject | Automation | en |
dc.title | Validation of sentinel 2 based machine learning models for Czech National Forest Inventory | en |
dc.type | J_ČLÁNEK | |
dc.date.updated | 2025-08-12T02:03:04Z | |
dc.description.version | OA | |
local.identifier.doi | 10.1016/j.ecoinf.2025.103133 | |
local.identifier.scopus | 2-s2.0-105001734292 | |
local.identifier.wos | 001464950200001 | |
local.number | July | |
local.volume | 87 | |
local.identifier.obd | 43928357 | |
local.identifier.e-issn | 1878-0512 | |
dc.project.ID | IGA25-PEF-DP-004 | |
dc.project.ID | Možnosti využití satelitních dat pro řešení vybraných úloh Národní inventarizace lesů | |
dc.identifier.orcid | Kovárník, Richard 0000-0002-8042-3120 | |
dc.identifier.orcid | Janová, Jitka 0000-0003-0306-8257 | |
local.contributor.affiliation | PEF | |
dc.relation.funder | MSM | |