Show simple item record

dc.contributor.authorYakoub Hassan Hameduh, Tareq
dc.contributor.authorMokrý, Michal
dc.contributor.authorMiller, Andrew David
dc.contributor.authorHeger, Zbyněk
dc.contributor.authorHaddad, Yazan Abdulmajeed Eyadh
dc.date.accessioned2023-11-24T01:03:16Z
dc.date.available2023-11-24T01:03:16Z
dc.date.issued2023
dc.identifier.issn1549-9596 Sherpa/RoMEO, JCR
dc.identifier.urihttps://repozitar.mendelu.cz/xmlui/handle/20.500.12698/1795
dc.description.abstractSide-chain rotamer prediction is one of the most critical late stages in protein 3D structure building. Highly advanced and specialized algorithms (e.g., FASPR, RASP, SCWRL4, and SCWRL4v) optimize this process by use of rotamer libraries, combinatorial searches, and scoring functions. We seek to identify the sources of key rotamer errors as a basis for correcting and improving the accuracy of protein modeling going forward. In order to evaluate the aforementioned programs, we process 2496 high-quality single-chained all-atom filtered 30% homology protein 3D structures and use discretized rotamer analysis to compare original with calculated structures. Among 513,024 filtered residue records, increased amino acid residue-dependent rotamer errors─associated in particular with polar and charged amino acid residues (ARG, LYS, and GLN)─clearly correlate with increased amino acid residue solvent accessibility and an increased residue tendency toward the adoption of non-canonical off rotamers which modeling programs struggle to predict accurately. Understanding the impact of solvent accessibility now appears key to improved side-chain prediction accuracies.en
dc.format4405-4422
dc.publisherAmerican Chemical Society
dc.relation.ispartofJournal of Chemical Information and Modeling
dc.relation.urihttps://doi.org/10.1021/acs.jcim.3c00134
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectrotamersen
dc.subjectprotein structureen
dc.subject3Den
dc.titleSolvent Accessibility Promotes Rotamer Errors during Protein Modeling with Major Side-Chain Prediction Programsen
dc.typeJ_ČLÁNEK
dc.date.updated2023-11-24T01:03:16Z
dc.description.versionOA-hybrid
local.identifier.doi10.1021/acs.jcim.3c00134
local.identifier.scopus2-s2.0-85164817104
local.identifier.wos001023558400001
local.number14
local.volume63
local.identifier.obd43925191
local.identifier.e-issn1549-960X
dc.project.IDAF-IGA2022-IP-081
dc.project.IDNU21J-08-00043
dc.project.IDGA22-14568S
dc.project.IDVýpočetní proces pro zpětné získání kodonů z 3D struktur proteinů: Cesta k syntetické proteinové biologii
dc.project.IDFeritin jako nástroj pro enzymy-řízenou aktivaci proléčiv
dc.project.IDBiodistribuce a real-time monitoring volných nebo apoferitinem enkapsulovaných kvarterních reaktivátorů cholinesteras
dc.identifier.orcidMiller, Andrew David 0000-0003-0661-249X
dc.identifier.orcidHeger, Zbyněk 0000-0002-3915-7270
dc.identifier.orcidHaddad, Yazan Abdulmajeed Eyadh 0000-0002-7844-4336
local.contributor.affiliationAF


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0