Optimization and Characterization of a Novel Antioxidant Naringenin-Loaded Hydrogel for Encouraging Re-Epithelization in Chronic Diabetic Wounds: A Preclinical Study

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Nonhealed wounds are one of the most dangerous side effects of type-2 diabetes, which is linked to a high frequency of bacterial infections around the globe that eventually results in amputation of limbs. The present investigation aimed to explore the drug-loaded (naringenin) hydrogel system for chronic wound healing. The hydrogel membranes comprising Na-alginate with F-127 and poly(vinyl alcohol) were developed to treat chronic wounds using the quality-by-design (QbD) approach. The optimized formulation was tested for various parameters, such as swelling, gel fraction, water vapor transition rate (WVTR), etc. In vitro evaluation indicated that a drug-loaded hydrogel displayed better tissue adhesiveness and can release drugs for a prolonged duration of 12 h. Scratch assay performed on L929 cell lines demonstrated good cell migration. The diabetic wound healing potential of the hydrogel membrane was assessed in streptozotocin-induced male Wistar rats (50 mg/kg). Higher rates of wound closure, re-epithelialization, and accumulation of collagen were seen in in vivo experiments. Histopathologic investigation correspondingly implied that the drug-loaded hydrogel could enhance dermal wound repair. The improved antimicrobial and antioxidant properties with expedited healing indicated that the drug-loaded hydrogel is a perfect dressing for chronic wounds.

Description

Keywords

antioxidant, hydrogel, healing, epithelium, in-vivo evaluation, composite film, membranes, gelatin, simvastatin, curcumin

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Item is licensed under: CC BY-NC-ND 4.0