Validation of sentinel 2 based machine learning models for Czech National Forest Inventory

dc.contributor.authorKovárník, Richard
dc.contributor.authorJanová, Jitka
dc.date.accessioned2025-08-12T02:03:04Z
dc.date.available2025-08-12T02:03:04Z
dc.date.issued2025
dc.date.updated2025-08-12T02:03:04Z
dc.description.abstractThe National Forest Inventory (NFI) of the Czech Republic provides essential data for forest management but requires significant time and resources. This study highlights the critical role of validating Sentinel-2-based machine learning models against real NFI data to ensure their reliability for forest monitoring. While satellite-based models offer a cost-effective alternative, their practical applicability depends on rigorous validation. We applied four commonly used machine learning models-Classification and Regression Trees, Random Forest, Support Vector Machine, and Naive Bayes-to Sentinel-2 imagery to estimate forest cover conditions. The Random Forest model achieved the highest overall accuracy (98.3 %). By systematically comparing model predictions with official NFI data, we address a key gap in remote sensing applications: the need for real-world validation beyond training datasets. Our findings demonstrate that properly validated Sentinel-2-based models can enhance large-scale forest monitoring, reducing the financial and labor burdens of traditional field surveys while ensuring data accuracy for sustainable forest management.en
dc.description.versionOA
dc.format103133
dc.identifier.issn1574-9541
dc.identifier.orcidKovárník, Richard 0000-0002-8042-3120
dc.identifier.orcidJanová, Jitka 0000-0003-0306-8257
dc.identifier.urihttps://repozitar.mendelu.cz/xmlui/handle/20.500.12698/2105
dc.project.IDIGA25-PEF-DP-004
dc.project.IDMožnosti využití satelitních dat pro řešení vybraných úloh Národní inventarizace lesů
dc.publisherElsevier Science BV
dc.relation.funderMSM
dc.relation.ispartofEcological Informatics
dc.relation.urihttps://doi.org/10.1016/j.ecoinf.2025.103133
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMachine learningen
dc.subjectRemote sensingen
dc.subjectData scienceen
dc.subjectForest managementen
dc.subjectNational forest inventoryen
dc.subjectAutomationen
dc.titleValidation of sentinel 2 based machine learning models for Czech National Forest Inventoryen
dc.typeJ_ČLÁNEK
local.contributor.affiliationPEF
local.identifier.doi10.1016/j.ecoinf.2025.103133
local.identifier.e-issn1878-0512
local.identifier.obd43928357
local.identifier.scopus2-s2.0-105001734292
local.identifier.wos001464950200001
local.numberJuly
local.volume87

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
J-Janová-Ecological Informatics-July-2025.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: