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Abstract

Fishponds form substantial part of standing water ecosystems in the landscape of the Central Europe.
We studied the effects of fish production and environmental parameters on phytoplankton in fifteen
fishponds of various size, fish production and situated at different altitudes. Water and plankton
samples were collected from April to October 2018 and 2019. Phytoplankton abundance, zooplankton
biovolume, total phosphorus, total nitrogen, ammonia-nitrogen, nitrites, nitrates, phosphates, and
total iron concentration were determined. Based on average values of total nitrogen (8.53 mg.l?),
total phosphorus (0.399 mg.l?), and chl-a (180 pugl") all fishponds were classified as hypertrophic.
Fish production was significantly correlated only with altitude. With increasing altitude, fishponds
have a lower nutrient content, lower temperature, and hence lower production. The direct effect of
fish production on phytoplankton was not observed. Two environmental parameters significantly
explained the variability in phytoplankton —altitude and total iron concentration. Our results indicate
that besides traditionally monitored parameters like nitrogen and phosphorus concentration,
the attention should also be focused on other factors potentially affecting studied ecosystems,

hypertrophic fishponds.
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INTRODUCTION

Fishponds represent the most numerous types of
stagnant water in the Czech Republic. Even though
their primary function used to be fish production,
fishponds have different functions, such as
recreation, nature protection, water retention and
water cycle (Popp et al., 2019).

Intensified management of fish production
in the second half of the 20™ century, including
fertilization, manuring, liming and supplementary
feeding, followed by increased stocking density, has
led not only to the increase in fish production but
also to significant eutrophication of fishponds in the
Czech Republic (Pechar, 2000). Fishery management
itself is just one of the sources of nufrient input
to fishponds. Inadequate melioration measures
of arable land and erosion in the watershed

also affected the water quality of fishponds and
significantly contribute to eutrophication (Moss,
2008). In recent years, wastewater treatment plants
(WWTP) have brought additional problems. Even
though a lot of WWTPs in small villages in the Czech
Republic were constructed within the last decades,
the level of organic substances and nutrients in the
recipient catchments is still very high (Langhammer
and Rodlova, 2013). With prolonged dry periods,
especially during the summer season, and a small
capability of dilution, inflow into the fishpond can
consist exclusively of WWTP effluents in some cases.

Due to fishpond eutrophication, the seasonal
dynamic of plankton communities has changed,
and cyanobacterial blooms have become
a regular phenomenon in the summer months.
The phytoplankton development depends on
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different abiotic and biotic factors. Most of the
studies emphasize limiting nutrients (phosphorus
and nitrogen) as the main factor affecting the
phytoplankton assemblage. For a long time,
phosphorus was considered a limiting factor for
phytoplankton growth, especially for the occurrence
of cyanobacterial water blooms (O'Neil et al., 2012).
However, recent studies have shown that different
forms of nitrogen determine the development
of phytoplankton, especially in shallow water
bodies. The denitrification process in eutrophic
and hypertrophic ponds results in low nitrogen
concentrations and favours the appearance of
nitrogen-fixing cyanobacteria (Ivanova et al,
2022). There are probably other important factors
influencing phytoplankton development. Different
environmental parameters can have different
impacts in shaping phytoplankton at different
temporal and spatial scales (Ozkan et al, 2013).
This is especially pronounced in nutrient-rich
ecosystems.

As mentioned before, one of the causes of
fishpond eutrophication and deterioration of water
quality is also the high density of stocked fish. Fish
with different feeding strategies can have different
effects on the phytoplankton: direct (herbivorous
and omnivorous) and indirect (regulation of
phytoplankton Dby zooplankton consumption)
(Koméarkova, 1998). Dominant fish species in
fishponds in the Czech Republic is usually the
common carp (Cyprinus carpio, L.) (Adamek et al.,
2012; Eurostat, 2022) which is able to alter both
the abiotic and biotic factors (Rahman, 2015a;
Adamek et al, 2016). It is generally accepted that
carp is omnivorous fish. With its forage activities,

List of monitored ponds

1 Hlin - Hlineny

2 Hioh - Hlohovecky

3 Jank - Jankovec

4  Kali - Kalich

5 Kriz - Krizovy

6  Kurd - Kurdejovsky

7  Milyn - Mlynsky

8 Nesy - Nesyt 1 1_.1
9 Pros - Prostredni

10 Prus - Prusky A
11 Stra - Strasak

12 Stit - Stitarsky

13  Sumi - Sumicky horni

14 Uhri - Uhricky

15 Unan - Unanovsky

1: Location of the studied fishponds within the Czech Republic

it can have a positive impact on the development
of phytoplankton by releasing nutrients from
sediment through bioturbation (bottom-up effect).
On the other hand, carp also can have strong grazing
pressure on zooplankton (top-down effect). Juvenile
and small-size carp favour feed on zooplankton
(Rahman et al, 2009). The low availability of
benthic invertebrates can shift preferences in feed
of large carp to zooplankton (Addmek et al., 2016).
Moreover, excessive carp growth can lead to an
imbalance of the entire ecosystem (Rahman, 2015b).

The main goal of this study was to reveal (i)
whether the fish production can directly affect
phytoplankton, and (ii) what are the main factors
explaining the phytoplankton development in
hypertrophic fishponds.

MATERIALS AND METHODS

Studied Fishponds

In total, 15 different shallow fishponds of various
sizes (area 1.8-250ha) used mainly for carp
production (yearly production 28-1271kgha?)
were selected for the study (Fig. 1). Fishponds are
situated at altitudes from 163 to 557 m (Tab. I). The
fishponds were also distinguished based on their
geology and the presence of wastewater treatment
plants above the studied ponds. Fishpond geological
information was described using map server of the
Czech Geological Survey (https://mapy.geology.cz/
geocr50/) where the main representation of rocks
was estimated.
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L. Basic parameters of fishponds

. . . . . . Zooplankton Zooplankton
Flsg:)%(;nd Alt(lrtn%de ?ﬁg? Geology Flzséllgr&dlif:gn Ff&gr&du}f;gn biovolume 2018 biovolume 2019
5 5 (mm?3.dm?) (mm?.dm?)
Hlin 557 2.8 gneiss 350 200 6.4 £4.53 17.72 + 8.1
Hloh 168 g4  Calcareousclay 445 28 5.55 + 3.32 2113 +11.17
and mudstone
Jank 362 454 migmatite 330 66 6.93+39 1714+ 16.33
Kali 538 10.6 gneiss 477 477 9.2+7.79 11.95+9.1
Kriz 155 gy LBy 920 899 1.9+104  115.81+24831
and mudstone
Kurd 199 e5g Calcareousclay 745 398 5.53 + 3.46 82.76 + 132.35
and mudstone
Mlyn 163 100  clays and sands 565 445 497 £1.27 19.26 + 29.88
Nesy 172 250 Ccalcareousclay 142 268 9.6+559  126.35+194.44
and mudstone
Pros 165 45 clays and sands 625 648 243 +1.42 36.72 + 36.69
Prus 237 1125 calcareousclay 284 1271 32+354 28.02 + 23.52
and mudstone
Stra 438 1.8 gneiss 200 179 9.4 +543 29.3 +18.97
Stit 393 627 migmatite 288 160 6.37 + 2.85 17.7 + 16.84
Sumi op  lppn CLSICEISCEY 390 700 441085 47.72 + 48.2
and mudstone
Uhri 255 1311 calcareousclay 57 214 19.1+11.03 7.36+4.38
and mudstone
Unan s ooy GEEE 625 121 7.25+0.21 19.63 + 12.69
granodiorite
Laboratory Analyses Samples for zooplankton analyses were collected

Water and plankton parameters were collected
from April to October 2018 and 2019. All samples
were collected in the outlet area. Water temperature,
oxygen content, pH (all measured using Hach HQ
40D, Hach-Lange, USA), conductivity (Conmet 1,
Hanna Instruments) and transparency (Secchi disk)
were measured in situ. Water for chemical analyses
was collected using a plastic bottle (volume of 11),
10cm below the surface. Total phosphorus (TP), total
nitrogen (TN), ammonia-nitrogen (N-NH,), nitrite-
nitrogen (N-NO,), nitrate-nitrogen (N-NO,), phosphate-
phosphorus (P-PO,), and total iron (TFe) were analysed
according to Hordkova (2007). Chlorophyll-a (chl-a)
was determined spectrophotometrically following the
ethanol extraction, according to Lorenzen (1967).

Samples for phytoplankton determination were
collected using a plankton net (mesh size 20pum)
and analysed in their native state. Samples for the
analyses of phytoplankton abundance were collected
using plastic containers from a depth 10cm below
the surface and fixed with Lugol's solution. Samples
were concentrated by ultrafiltration equipment
(Marvan, 1957). Enumeration of cyanobacteria and
algae cells was done using a Burker chamber under
the optical microscope Olympus BX51.

by horizontal tows, using a plankton net mesh
size 40um and preserved with formaldehyde
to the final concentration of 4% in the sample.
The sedimentation method for biovolume
determination was used to evaluate the quantity of
zooplankton. The collected zooplankton sample was
poured over a 20 um sieve to remove formaldehyde
and quantitatively transferred to the graduated
cylinder of the appropriate volume (typically 10 or
25ml according to plankton biomass in the sample).
The biovolume was recorded after 24 hours and
recalculated to mm3.dm?.

Statistical Analyses

Spearman rank order correlations of annual
averages were used to determine univariate
relationships among all the studied parameters.
Correlations were also used for preselection of
explanatory variables for multivariate analysis. The
redundancy analysis (RDA) was used to determine
relationships between phytoplankton taxonomical
groups and environmental parameters. Explanatory
variables were transformed by log (x+1). The final
selection of used explanatory variables was done
using the forward selection procedure. The RDA
was done in hierarchical design with the particular
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fishpond forming the whole plot. The annual averages
of both the studied years were used as split-plots.
Whole plots were freely permuted between each
other while split plots were not allowed to permute.
The RDA analysis was done using Canoco 5.15 (ter
Braak and Smilauer, 2018), Spearman correlations
using Statistica 13 (TIBCO Software Inc. 2020).

RESULTS

Environmental Parameters

The summary of measured environmental
variables indicates a large variability among the
fishponds, and between both the studied years
(Tab. ID). Based on the very high average values of
TN (8.53 mg.I™"), TP (0.399 mg.l?), and chl-a (180 ugl?)
fishponds can be characterized as hypertrophic.
Values of all parameters varied throughout the
season. Chl-a peaked in the July-September period,
while other factors varied without a clear pattern
throughout the vegetation season. The average
nutrient concentrations in 2018 (TN - 6.32mgl?,
TP-0.370mgl", N-NH, - 0.19mgl?, N-NO, - 0.013mgl?,
N-NO, -0.14mgl* and P-PO, - 0.079 mgI?) were lower
than in 2019 (TN - 10.75mgl?, TP - 0.427mgl?,
N-NH, -0.27mgl?, N-NO,-0.022mgl*, N-NO,-091mgl"
and P-PO, - 0.173 mg ™), while chl-a was higher in 2018
(219.3 ugl") compared to 2019 (140.7 ug.1™.

Chl-a as an indicator of primary production was
strongly negatively correlated with altitude and
positively correlated with conductivity and TN.
Altitude was negatively correlated with most of
the analysed parameters. On the other hand, fish
production correlated only with altitude (Tab. III).

Phytoplankton Community

As observed for the chemical parameters,
phytoplankton abundance also varied among
fishponds and between years. In majority of the
fishponds the cyanobacterial water bloom occurred at
least in one of the studied years. The cyanobacterial
bloom was not observed only in the Unan fishpond.
The abundance of cyanobacteria during water bloom
varied from 1x10° up to 11x106 cells.ml? (Tab. IV).
The peak of Cyanobacteria occurred from July to
September in both years. The dominant species of
Cyanobacteria were filamentous taxa Aphanizomenon,
Dolichospermum,  Cylindrospermopsis  raciborskii,
Raphidiopsis ~ mediterranea,  Sphaerospermopsis
aphanizomenoides, Cuspidothrix  issatschenkol,
Anabaenopsis, Pseudanabaena limnetica, Planktothrix
aghardii, and Limnothrix redekel. In some of
the fishponds, coccal Cyanobacteria (mainly
Microcystis) were dominant during the summer
months. In fishponds Hloh, Pros and Mlyn,
cyanobacterial water bloom was also recorded in
April 2018, at the beginning of the growing season,
with Pseudanabaena limnetica as the dominant
species (8.5x106 2.7x10° and 9.1x10°¢ cells.ml?)
alongside abundant Limnothrix redeket.

Chlorophyta were present in all fishponds
throughout the growing season in different
quantities. The highest abundance was recorded in
Kurd in October 2018 (8.73 x 105 cells.ml?). In some
fishponds, Chlorophyta were the most abundant
group at the peak of phytoplankton development
in May (Stit 2018, Sumi 2018 and 2019), July (Unan
2018), September (Hlin 2019) or October (Kurd
2018). The main representatives of Chlorophyta
were Scenedesmus, Desmodesmus, Kirchneriella,
Crucigeniella, Dyctiosphaerium, Tetrastrum, and
Monoraphidium. Representatives of other groups
were present in different abundances. During
the June-September period their presence was
negligible, when compared with Cyanobacteria.
They were more abundant only at the beginning
and the end of the season, and in the fishponds with
no algal blooms.

The RDA analysis of taxonomic groups
revealed two environmental factors explaining
the wvariability of phytoplankton, altitude, and
concentration of total iron (TFe). Altitude explained
13.8% of variability (pseudo-F = 4.5, P = 0.001)
and was positively correlated with the presence
of Chrysophyceae, Dinophyta and Euglenophyta,
and negatively with Chlorophyta and filamentous
Cyanobacteria (Fig. 2A). The TFe explaining 11.6% of
variability (pseudo-F = 4.2, P = 0.002) was positively
correlated with Bacillariophyceae, Xantophyceae,
coccal Cyanobacteria and Euglenophyta (Fig. 2A).

DISCUSSION

Water quality, plankton communities and fish
production in fishponds are interrelated and
affected by interactions of both the abiotic and
biotic factors, and fishery management.

Our results show that fish production was
significantly correlated with the only one parameter,
altitude. Fishponds at higher altitudes have a lower
nutrient content, lower temperature, and hence lower
fish production. The most abundant phytoplankton
taxa in all the studied fishponds were cyanobacteria
and chlorophytes, which are commonly found in
eutrophic and hypertrophic waterbodies (Borics
et al., 2000; Dembowska et al., 2018).

Surprisingly, our study did not reveal relation
effects of fish production on primary producers.
Chumchal and Drenner (2004) observed a high
phytoplankton abundance in a mesocosm
experiment with stocked carp and high phosphorus
concentration compared to a carp-free mesocosm.
Tatrai et al. (1997) studied Hungarian fishponds
stocked with carp, bream, white bream and roach
with production higher than 500kg.ha. They found
that fish biomass enhanced the phytoplankton
growth, which consequently lead to a change
in algal species composition towards larger-
sized cyanobacteria. In addition to carp, which is
a dominant species in the studied fishponds, the
influence of other fish (invasive fish, white fish,
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IV: The average values of phytoplankton abundance in the fishponds during the growing season. The category “Others”
comprises of Dinophyta, Chrysophyceae, Xantophyceae and Haptophyta. N — number of samplings in a given year.

Fishpond Year (N) Cyanobacteria Cyanobacteria

Cryptophyta Bacillariophyceae Euglenophyta Chlorophyta Others

filamentous coccal
Number of cells per ml
Hlin 2018 (5) 36,696 24,321 125 2,000 4,643 14,250 4,750
2019 (6) 250 924 1,500 278 510 26,816 6,333
Hloh 2018 (7) 1,904,003 13,065 0 4911 446 21,920 0
2019 (6) 597,656 25,000 0 11,002 807 11,125 1,302
Jank 2018 (7) 18,482 804 1,649 1,528 801 5,050 45
2019 (5) 12,917 39,667 1,608 497 481 12,297 1,861
Kali 2018 (6) 41,752 36,782 365 2,313 813 3,004 104
2019 (5) 83,768 70,991 2,009 5,232 1,188 10,661 688
Kriz 2018 (7) 241,598 150,830 2,589 4619 900 21,387 618
2019 (6) 571,626 0 3,137 1,134 153 19,225 116
Kurd 2018 (8) 244,807 5,964 2,005 327 156 113,642 0
2019 (5) 111,131 750 351 150 238 20,259 119
Mivn 2018 (6) 1,372,917 1,901 391 3,906 651 86,932 0
¥ 2019 (5) 898,438 1,250 250 438 0 23,938 0
Nes 2018 (7) 982,282 10,145 1,089 13,315 0 27,614 0
y 2019 (6) 918,469 4,740 17 838 712 11,244 0
Pros 2018 (7) 2,714,851 62,470 893 2,738 0 12,202 0
2019 (6) 39,271 163,727 347 4,063 608 60,891 0
Prus 2018 (6) 23,552 83,113 1,713 2,407 2,616 62,831 3,588
2019 (6) 130,853 220,159 6,094 7,545 9,087 31,994 1,042
Stra 2018 (6) 173,061 19,485 266 961 58 5,000 52
2019 (6) 235,685 54,688 2,418 3,564 2,500 17,649 3,609
Stit 2018 (7) 1,429 4,286 10,804 8,973 8,482 20,714 536
2019 (6) 52,300 1,122 2,493 5,268 3,422 24,662 2,103
Sumi 2018 (6) 72,505 48,891 10,337 14,673 1,196 122,232 1,254
2019 (5) 49,621 84,125 4,375 4,042 0 53,046 904
Uhri 2018 (5) 152,800 1,135,875 4,675 4,525 1,600 91,700 4,875
2019 (6) 6,896 134 91 892 451 1,340 35
Unan 2018 (7) 786 0 8,929 4,946 241 33,598 89
2019 (5) 5,313 292 885 156 448 2,458 0

predator fish) cannot be neglected. A change in fish
stock can differently influence phytoplankton, often
contrary to what was predicted (Koméarkova, 1998).
In addition to the total fish production, detailed data
about fish populations (present species, age and size
structure) are necessary for a better understanding
of fish-phytoplankton relations.

Altitude was highly negatively correlated with
chl-a. In the standing waters of the Czech Republic,
phytoplankton abundance is generally high at low
altitudes characterised by higher average water
temperature (LepSova-Skacelovd et al, 2018).
Altitude was not only correlated with most of the
studied parameters, but significantly affected the
phytoplankton assemblage (cf. Fig. 2). Our results
also showed that Chrysophyceae and Dinophyta
were positively correlated with altitude. LepSovéa-
Skacelova et al. (2018) noted that Chrysophyceae,
and in some cases Dinophyta, Cryptophyta and

Bacillariophyta were related to higher altitudes and
colder seasons. One of the probable causes, in addition
to temperature, can be generally lower nutrient
content of fishponds located at higher altitudes. Such
lower nutrient concentration determines lower
phytoplankton abundance (Poulickova et al, 2003;
LepSova-Skacelova et al., 2018).

We found total iron concentration significantly
affecting phytoplankton in our study. Iron has an
important function in photosynthetic activity, and
the assimilation of nitrogen (Geider and La Roche,
1994). It is well-known that iron can be a limiting
factor for phytoplankton growth in oceans (Zhang
et al, 2021), but data about freshwater systems
are very scarce. Yuan et al. (2021) studied the
interactive effect of iron and light on phytoplankton
assemblage in a eutrophic lake. In their study,
Bacillariophyta preferred low iron-light conditions,
while Cyanobacteria and Chlorophyta dominated
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2: Results of the redundancy analysis showing correlations between the main phytoplankton taxonomical groups and
environmental parameters selected by the forward selection procedure (A) and the position of fishponds within the ordination
(B). Fishpond symbols indicate geology: circle — gneiss, square — calcareous clay and mudstone, diamond —calcareous or quartz
sandstones, up triangle — migmatite, down triangle clays and sands, right triangle — granite and granodiorite. Fishpond symbol
colour represents the absence of the water treatment plant (empty), the presence of the water treatment plant just above the
studied fishpond (black) or the outflow from the water treatment plant flow through other fishpond(s) situated above the studied
fishpond (grey); communal pollution (black dot inside the symbol).

at higher iron-light conditions. Furthermore,
Sharma et al. (2009) showed the negative effect
of iron on phytoplankton growth. Even though
our study showed a strong relationship between
phytoplankton and iron, it should be emphasized
that only the total iron concentration was
determined. The analysis of the bioavailable iron
would be needed for a better explanation of the
phytoplankton-iron interaction. Differences in iron
concentration between fishponds can depend on
the geology of the surrounding area of the fishpond
(cf. Fig. 2B). Generally, acidic soils with a higher iron
content bind more organic matter, ammoniacal
nitrogen and phosphorus to the sediment (Colombo

et al, 2014; Fink et al, 2016) which contributes
to more stable fishpond ecosystem. On the other
hand, neutral and alkaline soils with lower iron
concentration release nutrients (Ng et al, 2022)
from sediments and hence increases phytoplankton
abundance. Iron and its bioavailability appear to be
one of the key factors affecting the functioning of the
entire fishpond ecosystem including development
of phytoplankton.

Water chemistry, including iron concentration,
can also be affected by the effluents from
wastewater treatment plants and municipal
pollution. Nevertheless, our study does not point to
a clear difference between these factors.

CONCLUSION

All fifteen fishponds in our study were hypertrophic. The most abundant phytoplankton groups were
cyanobacteria and chlorophytes. Cyanobacterial bloom regularly occurred in almost all fishponds.
We found a significant correlation between phytoplankton taxonomical groups with both the altitude
and the total iron concentrations. Altitude was very important factor in our study, significantly
correlated with different parameters, not only with phytoplankton itself. Iron concentration is
important factor in phytoplankton development. However, further studies are necessary for better
explanation of the iron-phytoplankton relation. Direct effect of fish stocking on the phytoplankton of
hypertrophic ponds with carp production has not been detected.
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