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Abstract: Hydrogen peroxide (H2O2) is steadily gaining more attention in the field of molecular
biology research. It is a major REDOX (reduction–oxidation reaction) metabolite and at high
concentrations induces oxidative damage to biomolecules, which can culminate in cell death.
However, at concentrations in the low nanomolar range, H2O2 acts as a signalling molecule and
in many aspects, resembles phytohormones. Though its signalling network in plants is much less
well characterized than are those of its counterparts in yeast or mammals, accumulating evidence
indicates that the role of H2O2-mediated signalling in plant cells is possibly even more indispensable.
In this review, we summarize hydrogen peroxide metabolism in plants, the sources and sinks of
this compound and its transport via peroxiporins. We outline H2O2 perception, its direct and
indirect effects and known targets in the transcriptional machinery. We focus on the role of H2O2

in plant growth and development and discuss the crosstalk between it and phytohormones. In
addition to a literature review, we performed a meta-analysis of available transcriptomics data which
provided further evidence for crosstalk between H2O2 and light, nutrient signalling, temperature
stress, drought stress and hormonal pathways.
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1. Introduction

Hydrogen peroxide, a chemical compound discovered by Louis Jacques Thenard a hundred years
ago, has properties that could justify classifying it as a phytohormone. In nature, it can be of inorganic
origin, for example, via reactions in the atmosphere [1] but H2O2 from this source has only an indirect
effect on living organisms. Thenard was the first to discover not only that H2O2 decomposes into
water but also that it can cause skin blistering at a high concentration. However, oxidative stress is
not the sole effect of this molecule. It is an evolutionarily conserved signalling molecule and in plants,
it has gained attention also for its role in the regulation of growth and development. Indeed, the
number of H2O2-related research articles published each year has doubled since 2008, with Web of
Science listing over 3000 plant science publications on this topic in the last five years. In this review,
we summarize different aspects of H2O2-mediated responses in plants, starting with the sources,
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catabolism and transport of H2O2. We then describe mechanisms for its perception and discuss its role
in plant signalling networks and its effects on plant growth and development.

2. Metabolism

Hydrogen peroxide H2O2 is a non-radical reactive oxygen species (ROS) and it, like singlet oxygen
1O2 and free radicals such as superoxide anion O2

− and hydroxyl radical •OH, is one of the major
members of the ROS family [2]. In contrast to other ROS, H2O2 is relatively stable, with a half-life
of ms and its level in a plant leaf oscillates around 1 µmol per gram of fresh weight under natural
conditions [3]. There are numerous routes, both enzymatic and non-enzymatic, for H2O2 production
in plant cells. The key sources include photorespiration, electron transport chains and redox reactions
in the apoplast [4,5]. The KEGG (Kyoto Encyclopedia of Genes and Genomes) database lists 150
classes of enzyme that produce or utilize hydrogen peroxide. Of these, only 29 enzymes encoded by
227 genes are annotated in Arabidopsis and the largest enzyme family formed by peroxidases has 75
entries (Figure 1, Supplementary tables). However, not all of these enzymes necessarily participate
in peroxide metabolism in plants. For instance, a flavin-containing monooxygenase like YUC6 may
produce hydrogen peroxide in the absence of its substrate but in vitro experiments indicate that in
this case the uncoupled reaction represents less than 4% of the enzyme’s activity [6]. In contrast,
mammalian flavin-containing monooxygenases are clearly a source of hydrogen peroxide [7]. The
key enzymes that are involved in Arabidopsis H2O2 metabolism reside in the apoplast, peroxisome,
chloroplast and mitochondria and they will be described in detail.

2.1. Electron. Transport Chains and Superoxide Dismutase

Under favourable conditions, the majority of intracellular H2O2 is produced from molecular
oxygen by a stepwise reaction via a superoxide anion intermediate which undergoes enzymatic
reduction to H2O2. Excessive energy and/or malfunctioning of chloroplast and mitochondrial
energetic metabolism are key causes of superoxide anion generation in plant cells. In chloroplasts,
superoxide anions are produced when the electron-transport chain of photosystem I is oversaturated
by excessive irradiation and electrons are transmitted by the Mehler reaction to oxygen molecules [8].
The resulting superoxide anions are then converted to H2O2. This dismutation step is a pH-dependent
non-enzymatic event (for details see for example, [9]) but cells also catalyse the process by means
of superoxide dismutase (SOD) in order to rapidly remove the toxic superoxide radical. Besides
photosystem I, H2O2 may also originate at the manganese-containing, oxygen-evolving complex
which is the donor site of photosystem II and by the reduction of singlet oxygen or superoxide
anions by photosynthetic electron transport chain components such as plastoquinol [10]. In seeds
and non-photosynthetic parts of plants, the main sources of superoxide anion are coupled with the
processes of cell respiration in mitochondria. Electron leakage occurs especially in complexes I, II and
III and it is estimated that 1–5% of the oxygen entering the plant respiratory chain is converted into
H2O2 [11–13]. The Arabidopsis genome encodes eight SOD isozymes which can be divided into three
classes according to their metal cofactor (Fe2+, Mn2+, Cu2+). There are three chloroplastic Fe-SODs and
two Mn-SODs localized in mitochondria. The Fe-SODs are considered to be the oldest in evolutionary
terms but the two classes share structural similarities and can also be found in prokaryotes. In
contrast, the Cu/Zn-SOD class, which has three isozymes in Arabidopsis, most likely emerged after
oxygen saturated the atmosphere. It is specific to eukaryotes and can be present in different cell
compartments [14,15].
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Figure 1. Key enzymes of hydrogen peroxide metabolism in plants. The list shows enzymes that 
directly catalyse hydrogen peroxide production or degradation in Arabidopsis, including the 
numbers of different isozymes, a comparison of relative gene expression profiles in seedlings, roots 
and shoots and the figure indicates subcellular localization. Colour coding: anabolic processes 
(green), catabolic processes (red), based on UniProt [16], SUBA 3.0 [17] and average gene expression 
profiles in 45, 24 and 7 NGS experiments for seedlings, leaf and root respectively (ThaleMine [18]). 

2.2. NADPH Oxidase 

The second largest group of H2O2-producing enzymes consists of the respiratory burst 
oxidases (Figure 1), which are also known as respiratory burst oxidase homologs (RBOHs) based on 
their homology to mammalian phagocyte NADPH oxidase (nicotinamide adenine dinucleotide 
phosphate oxidase). RBOHs, together with the type III cell wall peroxidases, are associated with the 
so-called “oxidative burst,” which is considered to be one of the main responses of plant cells to 

Figure 1. Key enzymes of hydrogen peroxide metabolism in plants. The list shows enzymes that
directly catalyse hydrogen peroxide production or degradation in Arabidopsis, including the numbers
of different isozymes, a comparison of relative gene expression profiles in seedlings, roots and shoots
and the figure indicates subcellular localization. Colour coding: anabolic processes (green), catabolic
processes (red), based on UniProt [16], SUBA 3.0 [17] and average gene expression profiles in 45, 24
and 7 NGS experiments for seedlings, leaf and root respectively (ThaleMine [18]).

2.2. NADPH Oxidase

The second largest group of H2O2-producing enzymes consists of the respiratory burst oxidases
(Figure 1), which are also known as respiratory burst oxidase homologs (RBOHs) based on their
homology to mammalian phagocyte NADPH oxidase (nicotinamide adenine dinucleotide phosphate
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oxidase). RBOHs, together with the type III cell wall peroxidases, are associated with the so-called
“oxidative burst,” which is considered to be one of the main responses of plant cells to biotic or abiotic
stress [19,20] but is also a crucial part of normal plant growth and development [21]. RBOHs are plasma
membrane-localized proteins which oxidize cytosolic NADPH, transferring the released electron to O2

and producing superoxide which is then dismutated. In Arabidopsis, there are ten RBOH genes which
are divided into three classes according to their tissue-specificity [22,23]. RBOHs are probably the best
studied enzymatic ROS-generating system in plants and different regulatory mechanisms have been
described. RBOHs undergo multiple post-translational modifications (PTMs), including S-nitrosylation
and phosphorylation, that are required for enzyme activity and are regulated by calcium ions and
phosphatidic acid [24,25].

2.3. Polyamine Oxidase

Hydrogen peroxide is an end product of oxidative degradation of amines and polyamine
degradation is considered to be an especially important source of hydrogen peroxide in plants
(e.g., [26]). Plant polyamines are catabolized by two distinct classes of amine oxidases, the flavin
adenine dinucleotide (FAD)-dependent polyamine oxidases and the copper amine oxidases, of
which there are, respectively, five and eight putative functional isozymes encoded by the Arabidopsis
genome [27]. The copper amine oxidases oxidize primary amino groups, producing ammonia, H2O2

and an aminoaldehyde, whereas the polyamine oxidases oxidize the secondary amino groups and
the reaction products depend on the catalytic mechanism and substrate specificity of a given isozyme.
All five Arabidopsis polyamine oxidases are reportedly intracellular and oxidize the carbon on the
exo-side of the N4 atom of spermine and spermidine to produce 1,3-diaminopropane, H2O2 and an
aminoaldehyde [28]. Polyamines play an important role in plant tolerance of abiotic stress and at least
part of this tolerance is associated with hydrogen peroxide production (see for example, review [29]).
Furthermore, polyamines represent a direct link between H2O2 and hormonal pathways, as it has been
shown that cytokinin increases the polyamine content of plants [30].

2.4. Peroxisomal Production of H2O2

Peroxisomal enzymes represent a major site of H2O2 production in a plant cell. In Arabidopsis,
in addition to SOD and amine oxidases that are present in multiple compartments, peroxisomes
contain acyl-CoA oxidases, glycolate oxidases, uricase, sulphite oxidase, aldehyde oxidase and
sarcosine oxidase (Figure 1). Xanthine oxidase, which converts xanthine to urate and H2O2, can
be also localized in peroxisomes [2] but a putative Arabidopsis homolog that preferentially accepts
NAD+ as the electron acceptor [31] reportedly resides in the cytosol. A significant proportion
of peroxisomal H2O2 originates during the beta-oxidation of long-chain fatty acids via acyl-CoA
oxidase [32], which is an especially important process in germinating seeds that contain glyoxysomes,
specialized peroxisome-like organelles. However, in photosynthetic tissues, the role of peroxisomes in
H2O2 metabolism is predominantly via photorespiration reactions that may contribute up to 70% of
the total production of H2O2 in a plant cell [33,34]. In this reaction, glycolate produced in chloroplasts
is converted to glyoxylate by glycolate oxidase in peroxisomes. The Arabidopsis genome contains five
genes encoding glycolate oxidase and their combined relative expression in photosynthetic tissues
is the highest of all H2O2-producing enzymes (Figure 1). However, the actual levels of H2O2 in
peroxisomes are kept in check by catalase and it is estimated that the peroxisomal H2O2 concentration
is under 10 µM [35].

2.5. The H2O2 Scavenging System

Plant cells survive with H2O2 levels that would kill animal cells and the estimated endogenous
H2O2 content of plant cells is usually much higher than that found in animals and bacteria [36]. H2O2

accumulation increases the probability of hydroxyl radical production via the Fenton reaction and this
would cause significant oxidative damage to cellular structures if it were not for the presence of a highly
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efficient antioxidant system. Higher plants contain several types of peroxidases, including catalases,
ascorbate peroxidases (APX), thiol-specific peroxidases and classical secretory plant peroxidase.
Furthermore, non-enzymatic compounds like tocopherols, ascorbic acid and flavonoids and glutathione
play significant roles in H2O2 scavenging [37,38]. The plastoquinone and ubiquinone pool also
contribute to the ROS scavenging process as illustrated in recent reports [39,40]. In accordance,
inhibition of enzymes that maintain the oxidized plastoquinone and ubiquinone pool, plastid terminal
oxidases and mitochondrial alternative oxidases, respectively, stimulates H2O2 production [41,42].

2.6. Catalases

Though catalase belongs to the peroxidase family, it is usually considered separately due to its
unique ability to convert two molecules of H2O2 into water and molecular oxygen without the need
for any reductant. This heme-containing enzyme is first oxidized to a high-valence iron intermediate,
which is then reduced by a further reaction with H2O2 [43]. Under specific circumstances, the
intermediate may also react with a different substrate and catalase may oxidize donors such as
alcohols or phenols. Catalase has a high turnover rate but a low substrate affinity, with a Km value in
the millimolar range, a far greater concentration of H2O2 that that expected to be present in the cell [35].
As an illustration, the activity of a single molecule of rice catalase (kcat 80,000; Km 100 mM) [44] would
be equivalent to more than 2200% of tobacco APX (kcat 1800; Km 0.022 mM) [45] at 100 mM H2O2

but to only 1% at concentrations below 1 µM H2O2, which would render catalase redundant. Of
course, the constants determined in vitro may be misleading; the active form of catalase is a tetramer
and it has been shown that, for example, PTMs may significantly affect the kinetics of a multimeric
enzyme (e.g., [46]). Nevertheless, even though catalase activity has also been reported in the cytosol
and mitochondria, its predominant localization is in peroxisomes, compartments with a high H2O2

concentration where its efficiency should be greatest (e.g., [47]). There are three functionally conserved
classes of catalase with different spatial and developmental localizations in plants. For example, in
tobacco catalase class I detoxifies H2O2 produced in photorespiration reactions, class II is localized in
the vascular system and class III is present predominantly in flowers and fruits [48].

2.7. Ascorbate and Thiol-Specific Peroxidases

APX and glutathione peroxidases belong to the most important group of intracellular
peroxidases [49]. Several types of APX have been described in plants; they include soluble enzymes
in the cytosol, chloroplast and mitochondria and membrane-bound peroxidases in peroxisomes,
glyoxysomes and thylakoids [50]. APX is the first enzyme in the so-called ascorbate-glutathione
cycle, which includes monodehydroascorbate reductase, dehydroascorbate reductase and glutathione
reductase and reduces H2O2 and regenerates ascorbate via NAD(P)H [49]. The Arabidopsis genome
encodes seven different APX isozymes and as indicated above, APX may be more important than
catalase for H2O2 metabolism. Indeed, it has been shown that in the absence of cytosolic APX1, the
entire chloroplastic H2O2-scavenging system in Arabidopsis collapses, H2O2 levels increase and protein
oxidation occurs [51]. The thiol-specific peroxidases peroxiredoxins and glutathione peroxidases
detoxify a broad spectrum of peroxide substrates [8]. However, recent evidence from S. cerevisiae
indicates that this could be a secondary role and that thiol peroxidases perceive and transfer oxidative
signals to signalling proteins and regulate transcription [52]. In plants and bacteria, six groups of
peroxiredoxins are recognized on the basis of differences in sequence, structure and positions of
conserved cysteinyl residues [53].

2.8. Peroxidases (Class III)

Peroxidases are by far the most abundant family of enzymes in H2O2 metabolism (Figure 1).
These so-called class III peroxidases probably have a correspondingly diverse range of functions, of
which only a few, in certain plant species, have been revealed (see for example [54,55] for details). From
the point of view of this review, it is important to note that the class III peroxidases participate not only
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in H2O2 catabolism via oxidation of phenolic compounds but also in producing it via an oxidative
cycle using apoplastic reductants. For instance, it has been shown that in Arabidopsis cell culture they
contribute to ca. 50% of the H2O2 produced during the oxidative burst in pathogen defence [56]. Class
III peroxidases can be found in vacuoles but the majority are apoplastic or associated with cell walls in
the apoplast as they play a key role in maintaining cell wall integrity by catalysing its cross-linking
and loosening, lignification and suberization [57].

3. Transport

Normal levels of H2O2 leaf extracts are reported to be in the µmol per gram of fresh weight
range but they may significantly vary within the same plant [3]. For instance, localization of hydrogen
peroxide in different regions of the leaf reveals a pattern of increasing accumulation from the base
to the leaf tip [58]. There is no clear evidence for long distance transport of H2O2 but it is the least
reactive ROS and this allows it to travel at least among neighbouring cells or cellular compartments
and to serve as an important signalling molecule [59]. Thus, if it is able to escape the H2O2-scavenging
mechanisms described above and is not reduced to the highly reactive hydroxyl radical, it may freely
diffuse from the site of its generation and reach its putative target. Questions of how it overcomes
the competing H2O2-scavengers that prevent the targeted oxidation of redox-regulated proteins are
still not fully answered [60] but it is now clear that transport mediated by simple diffusion would not
explain, for example, rapid stress-induced transfer of H2O2 generated in apoplast by NADPH oxidases
into cytosol and that a H2O2-specific transporter or channel must therefore exist.

Peroxiporins

Henzer and Steudle found that treatment with HgCl2 (an aquaporin activity inhibitor) caused a
rapid decrease in H2O2 and water influx and they postulated the existence of an aquaporin subclass,
peroxiporins [61]. The similarity of H2O2 to the water molecule indicates that aquaporins could
have such a function. Plant aquaporins are recognized as multifunctional proteins transporting not
only water but also many other small uncharged molecules (e.g., CO2 and nutrients) and they thus
play a role in the regulation of plant growth and development and in responses to a wide range of
stresses. Aquaporins belong to the ancient superfamily of major intrinsic proteins (MIPs) and are
present throughout living organisms with the exception of some Archea and bacteria [62]. Plant
aquaporins are divided into five subfamilies: plasma membrane intrinsic proteins (PIPs), tonoplast
intrinsic proteins (TIPs), nodulin26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs)
and uncategorized intrinsic proteins (XIPs). The latter two groups, which were discovered more
recently, are not present in some plant species [63]. H2O2 has a higher polarity than water and thus not
all aquaporins are peroxiporins. For instance, Hooijmaijers et al. employed heterologous expression of
all 13 Arabidopsis PIPs in yeast and found that only five of them inhibited yeast growth in the presence
of H2O2 [64]. Since the first report of H2O2 transport by an aquaporin appeared, this phenomenon has
been studied in diverse plant species, including maize [65], rice and barley [66], Arabidopsis [64,67–69],
tulip [70], tobacco, potato and tomato [71]. Kim and Steudle (2009) suggested the occurrence of
feedback regulation in aquaporin-facilitated H2O2 transport, based on the observed inhibition of
aquaporin transport capacity after H2O2 treatment [72]. Further studies showed that this inhibition
may occur indirectly by the internalization of aquaporin into vesicles that is caused by the change
in the phosphorylation status of aquaporins [73,74]. Hooijmaijers et al. (2012) also found that H2O2

treatment can alter aquaporin expression, indicating a feedback loop between H2O2 concentration and
peroxiporin expression [64].

4. Signalling

It has been widely reported that H2O2 effects are dose-specific and that at low concentrations
it serves as a signalling molecule. Despite H2O2 being rapidly removed by protective enzymes, the
scavenging mechanisms are less effective at concentrations of around 10 nM, enabling H2O2 to be a second
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messenger [59,75]. In general, proteins are primary targets of all oxidative species and there are two modes
of action by which H2O2 is perceived: direct oxidation of amino acid residues or reaction with reactive
intermediates (e.g., [76]). The latter represents an indirect effect mediated via peroxide decomposition
products (hydroxyl radical and singlet oxygen) and is usually considered to be a non-specific oxidative
stress response. However, it has been shown that the transcription factor PerR, a major regulator of the
peroxide inducible stress response in bacteria, senses H2O2 via this pathway, employing metal-catalysed
histidine oxidation [77]. The complexity of ROS-mediated processes in plants somewhat limits our
understanding of H2O2 signalling circuits and the present state of this understanding lags far behind that
for bacteria, yeasts or mammalian cells. For instance, the ratio of superoxide radical to hydrogen peroxide
may regulate the respiratory chain in mitochondria [78] and it is believed that the ratio of singlet oxygen
plus superoxide radical to hydrogen peroxide determines the activation of cell death programs [79]. Some
mechanisms have been conserved during evolution, whereas others seem to be plant-specific. Here, we
summarize the main circuits that have been found to operate in plants.

4.1. Oxidation of Cysteine Residues

Targets of direct oxidation are predominantly cysteinyl residues and reactive thiol side chains can
act as sensors or switches in both signal transduction and regulation of enzyme activity [76]. Depending
on H2O2 concentration a cysteinyl residue can react to undergo several reversible or irreversible
modifications, starting with sulfenic acid, which is highly reactive and reacts with other proximal
thiolates resulting in the formation of inter/intramolecular disulphide bonds or S-glutathionylation.
The reduction of disulphide bonds and the removal of glutathione are regulated by members of the
thioredoxin and glutaredoxin enzyme families. Sulfenic acid can be also further oxidized by H2O2 to
sulfinic or even sulfonic acid [76,80]. Some signalling models predict that a hypothetical receptor may
undergo successive oxidation steps and that each step would correspond to a physiological response
but it remains to be seen whether such a receptor exists. Experiments carried out in vitro have shown
that the rate of reaction of hydrogen peroxide with cysteine is relatively low but this does not apply to
H2O2-scavenging enzymes. The reaction of the cysteinyl residue in peroxiredoxin has an apparent
second order rate constant seven orders of magnitude higher than that for cysteinyl in BSA [81] and
Marinho et al. calculated that the H2O2 concentration needed for a peroxiredoxin-mediated response
time of 5 min is as low as 0.2 nM [82]. The thiol-specific peroxidases thus act as receptors and, upon
oxidation, interact with and oxidize effector proteins, forming a redox relay. For example, Arabidopsis
glutathione peroxidase functions as both a redox transducer and a scavenger in stomatal closure [83].
Key enzymes in photosynthesis and carbohydrate metabolism are oxidized in response to H2O2,
including RuBisCO, phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, transketolase
and sedoheptulose-1,7-bisphosphatase [84]. It is very likely that this is also a redox relay mediated by
peroxiredoxins present in the chloroplast but evidence for this is lacking.

4.2. Oxidation of Methionine Residues

Methionine, the second proteinaceous sulphur-containing amino acid, is usually not considered
to be a regulatory target in H2O2 signalling but its first oxidized form (methionine sulfoxide) is
the product of a PTM that can be reversed via the action of a specific reductase [76]. The fact that
this enzyme increases H2O2 tolerance indicates that methionine residues have a role at least in the
H2O2-induced stress response [85]. Jacques et al. studied protein methionine sulfoxide dynamics in
catalase knock-out Arabidopsis and found that 51 proteins were significantly more oxidized compared
to wild-type. They also demonstrated that the activity of glutathione S-transferase is reduced upon
methionine oxidation [86].

4.3. Other Protein PTMs

It should be noted that the direct effect of H2O2 on protein PTMs is not limited to cysteine or
methionine residues. In fact, the presence of oxidative PTMs has been shown to interfere with other
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PTMs close to the oxidized site [87]. An alteration in the PTM pattern can play a crucial role in
signalling. The well-known regulator TP53, which participates in mammalian H2O2 signalling, has to
integrate a complex network of PTMs [82]. Its Arabidopsis orthologue SOG1 (suppressor of gamma
response 1) is hyperphosphorylated in response to ROS and it has been proposed that H2O2 regulates
its hyperphosphorylation, ultimately leading to cell cycle regulation [88]. Examples from mammalian
systems also indicate that PTM by ubiquitination and targeted protein degradation is key to the H2O2

response [82]. However, our knowledge about its role in plant H2O2 circuits is limited. It has been
found that UPL5 ubiquitin ligase mediates degradation of the transcription factor WRKY53 [89] but
there are more than 1500 E3 enzymes in Arabidopsis and this, together with extensive crosstalk with
phytohormonal networks (which all to some extent converge on the proteasome) [90], represents a
substantial obstacle to the elucidation of H2O2 signal transduction.

4.4. Transcription Factors

4.4.1. HsfA

Heat-shock transcription factors are transcriptional activators that, once trimerized, specifically
bind cis-elements called heat shock elements, palindromic DNA sequences that are found in the
promoters of heat stress-inducible genes of all eukaryotes, including that encoding APX, the
major catabolic enzyme in Arabidopsis H2O2 metabolism [91,92]. The trimerization mechanism
requires intramolecular disulphide bonds and it can be directly induced by H2O2 (reviewed in,
for example, [93]). In Arabidopsis, HsfA2 was found to be involved in H2O2 signalling and it was
shown that both its transcript and the transcript levels of its target genes were induced by treating
with exogenous H2O2 [94].

4.4.2. NAC Domain-Containing Protein

NAC (No apical meristem Arabidopsis transcription activation factor Cup-shaped cotyledon)
domain-containing proteins constitute one of the largest transcription factor families in plants and
they are involved in multiple developmental and physiological processes, including senescence and
abiotic stress responses. Multiple genes of this family have been found to be upregulated in response
to H2O2 [95] treatment and it has been suggested that NAC042 (JUB1) functions as a modulator of
cellular H2O2 levels [96]. NAC059-dependent gene expression was triggered after H2O2 treatment [97]
indicating that NAC could be a primary target of H2O2. Furthermore, two transcription factors
(NAC013 and NAC017) that apparently shuttle between the nucleus and endoplasmic reticulum
membrane mediate redox-related retrograde signalling [98,99].

4.4.3. Mediators of RNA Polymerase

In yeast and mammals, an RNA polymerase inhibitor localized in cytosol is activated by H2O2

through the thioredoxin system and translocated into the nucleus [82]. Its putative orthologue in
Arabidopsis is not known to be a H2O2-responsive protein but mediators of RNA polymerase II have
been found to be upregulated in response to H2O2, including MED37C [94]. Shaikhali et al. showed
that members of this family readily form oligomers in vitro via intramolecular disulphide bonds [100]
and showed that root growth in the knock-out mutant med32 was significantly less affected by H2O2

than that in wild-type plants [101].

4.4.4. WRKY and ZAT (Zinc finger of Arabidopsis thaliana) Transcription Factors

There are 74 WRKY amino acid signature sequence-containing transcription factors in Arabidopsis
that contain four-stranded β-sheet WRKY DNA binding domain/s ca 60 amino acids in length and
zinc-finger motifs [102]. Like Nascent polypeptide-Associated Complex NAC domain-containing
proteins, these transcription factors participate in stress-related responses and some have been found to
be upregulated in response to H2O2. WRKY30 and WRKY53 were found to be upregulated in response
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to ozone and H2O2 exposure, with WRKY53 being much more responsive to H2O2 than WRKY30
and vice versa for ozone [103]. WRKY46 was upregulated by H2O2 [104] and WRKY70 is a putative
interactor of the H2O2-responsive zinc finger protein ZAT7 [105]. ZAT12, another H2O2-responsive
transcription factor, was proposed to mediate iron uptake control via its interaction with the FIT
protein and with H2O2 as a signal in iron deficiency responses [106]. The present evidence indicates
that WRKY transcription factors and ZAT zinc finger proteins participate in responses to H2O2 but a
more detailed analysis of WRKY/ZAT-mediated transcription is needed in order to test the hypothesis
that they play a role as the primary target. The fact that ZAT12 and ZAT5 respond positively to both
ascorbate and H2O2 [107] indicates that this is probably not the case, at least for the ZATs.

4.5. Calcium Ions

Calcium ions play a key role in a vast array of signalling pathways in plants (e.g., [108]). Ca2+

is a second messenger like H2O2 and multiple characterized cascades require their combined effect,
for example, via the opening of H2O2-dependent Ca2+ channels [109–111]. The Ca2+-binding protein
calmodulin is an activator of catalase [112] and calmodulin-binding transcription activators have been
found to be upregulated by H2O2. BT2, another calmodulin-binding protein which is upregulated
by H2O2, is also part of an E3 ligase complex [113,114]. Moreover, Ca2+-dependent phosphorylation
activates NADPH oxidases (e.g., [115]) and plays a role in the so-called ROS-Ca2+ hubs described in
Section 5.11.

5. H2O2 in Growth and Development

The role of H2O2 in the life of plants is illustrated in Figure 2 and outlined in the following text,
which presents examples from different developmental stages.

5.1. The Crosstalk between H2O2 and Phytohormones

The first genome-wide analyses of plant H2O2 signalling revealed a connection between ethylene
and H2O2. Ethylene signalling is induced in response to H2O2 accumulation [116] but the ethylene
receptor ETR1 itself perceives H2O2 directly in an ethylene-independent manner that does not
require its kinase domain [117]. ROS is a key component of phytohormonal signalling networks
and does not only mediate stress-related pathways. From the proteome-wide point of view, catalases,
peroxiredoxins, disulphide isomerases and thioredoxins have been detected at high frequencies
in phytohormone-responsive proteomics studies and APX, glutathione S-transferase and class III
peroxidase were found at least once in all reported hormone-responsive proteomes; see Table 1 [90].
H2O2 mediates hormonal homeostasis (e.g., auxin conjugation [118] and degradation [119]) but
enzymes involved in hormone metabolism may produce H2O2. These include abscisic acid aldehyde
oxidases, enzymes that catalyse the final step in abscisic acid biosynthesis producing H2O2 in the
process. Auxin aldehyde oxidases are also present in Arabidopsis but it is not clear to what extent
these enzymes contribute to auxin metabolism [120]. Furthermore, monooxygenases may catalyse a
H2O2-producing side reaction, as illustrated above for the auxin biosynthetic enzyme YUC6, which
is encoded by a member of a multigene family in Arabidopsis. Similar enzymes are present in the
pathways of cytokinin metabolism (hydroxylases cytochrome P450 735A1 and 735A2), gibberellin
and brassinosteroid biosynthesis (ent-kaurene oxidase, ent-kaurenoic acid oxidase) and abscisic acid
metabolism (hydroxylases cytochrome P450 707A1-707A4). Our comparison of expression profiles
revealed that multiple hormonal metabolism genes share patterns of expression with those of H2O2

metabolism; the former include ABA4 (31 similar patterns), tryptophan aminotransferases TAR3 (29)
and TAR4 (29), methyl esterase MES1 (28), cytokinin biosynthetic genes IPT2 (26), IPT6 (22) and LOG2
(24), ethylene metabolism genes ACO2 (23) and ACS4 (20) and Ent-copalyl diphosphate synthase GA1
(27) (see Table 2 and Supplementary Materials for details).
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Figure 2. Hydrogen peroxide-mediated processes in plant growth and development. This figure
summarizes our present-day knowledge about the role of H2O2 in the life of plants as described,
with references, in Section 5. ABA—abscisic acid, AUX—auxin, BR—brassinosteroids, ET—ethylene,
GA—gibberellins, SA—salicylic acid, JA—jasmonic acid, AOX—amine oxidases, PRX—peroxidases,
RBOH—NADPH oxidases, PCD—programmed cell death. The water droplet shape indicates flooding
and absence of water, for hypoxia and drought, respectively.
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Table 1. Proteins of hydrogen peroxide metabolism in Arabidopsis identified in phytohormone-responsive proteomics analyses. Based on a previously published
overview of hormone-responsive proteins [90].

AGI Protein Name (UniProt)
Relative Protein Abundance

Auxin Abscisic Acid Brassinosteroid Cytokinin Salicylic Acid Jasmonate/Oxylipins Strigolactone

AT1G05260 Peroxidase 3 down [121]
AT1G06290 Acyl-coenzyme A oxidase 3 up [122]

AT1G07890 L-Ascorbate peroxidase 1 down [121] down
[30,123,124] up [125,126]

AT1G08830 Superoxide dismutase [Cu-Zn] 1 up [127]
AT1G20620 Catalase-3 up [128] down [129] up [130] up [130]
AT1G20630 Catalase-1 up [131]
AT1G31710 Amine oxidase down [121]
AT1G44446 Chlorophyllide a oxygenase down [132]
AT1G65980 Peroxiredoxin-2B down [121] up [126]
AT1G71695 Peroxidase 12 down [121] down [132]
AT1G77490 L-Ascorbate peroxidase T up [133]
AT2G18150 Peroxidase 15 up [127]
AT2G22420 Peroxidase 17 up [127]
AT2G26230 Uricase down [121]
AT2G28190 Superoxide dismutase [Cu-Zn] 2 up [134]

AT2G30490 Trans-cinnamate
4-monooxygenase up [131]

AT2G43350 Probable glutathione peroxidase 3 down [121]
AT3G06050 Peroxiredoxin-2F up [134]
AT3G10920 Superoxide dismutase [Mn] 1 down [135] up [136] down [126]
AT3G11630 2-Cys peroxiredoxin BAS1 up [30,129] up [125]
AT3G14415 (S)-2-hydroxy-acid oxidase down [125] up [130] up [125,130]
AT3G14420 (S)-2-hydroxy-acid oxidase GLO1 up [30] up [130] up [126,130]
AT3G26060 Peroxiredoxin Q, chloroplastic up [134]
AT3G32980 Peroxidase 32 down [30] up [127]
AT3G49120 Peroxidase 34 up [128,131] down [30] up [127]
AT3G56350 Superoxide dismutase [Mn] 2 up [137]
AT4G08390 L-Ascorbate peroxidase S up [126] down [30]
AT4G08770 Peroxidase 37 up [127]
AT4G08780 Peroxidase 38 up [127]
AT4G15760 Monooxygenase 1 up [137]
AT4G16760 Acyl-coenzyme A oxidase 1 up [133] up [122]
AT4G25100 Superoxide dismutase [Fe] 1 up [127] up [125]
AT4G35000 L-Ascorbate peroxidase 3 down [30]
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Table 1. Cont.

AGI Protein Name (UniProt)
Relative Protein Abundance

Auxin Abscisic Acid Brassinosteroid Cytokinin Salicylic Acid Jasmonate/Oxylipins Strigolactone

AT4G35090 Catalase-2 up [131] up/down
[30,123] up [130] up [130]

AT4G36430 Peroxidase 49 up [127]
AT5G06290 2-Cys peroxiredoxin BAS1-like up [126]
AT5G14220 Protoporphyrinogen oxidase 2 up [132] up [132]
AT5G17820 Peroxidase 57 up [128]
AT5G18100 Superoxide dismutase [Cu-Zn] 3 up [127]
AT5G23310 Superoxide dismutase [Fe] 3 down [138] down [122]

AT5G49970 PYRIDOXINE/PYRIDOXAMINE
5′-PHOSPHATE OXIDASE 1 up [122]

AT5G51100 Superoxide dismutase [Fe] 2 up [139]
AT5G64120 Peroxidase 71 down [131] up [122] down [137]
AT5G65110 Acyl-coenzyme A oxidase 2 down [132]



Int. J. Mol. Sci. 2018, 19, 2812 13 of 30

5.2. Light Signalling

Light signal transduction is involved in H2O2 metabolism and/or signalling. It has
been demonstrated that blue-light perception by cryptochrome is directly coupled with H2O2

generation [140–142]. It has also been proposed that phytochrome B modulates homeostasis of
reactive oxygen species in roots via synthesis and transport of abscisic acid [143]. Our comparison of
expression profiles revealed that genes participating in light signalling share patterns of expression
with H2O2 metabolism genes; the former include MED25 which acts in the repression of phytochrome
B-mediated light signalling (26 similarities), COP1 (32), phytochrome A (29), PIF1 (28), phytochrome B
(26), phytochrome C (25) and cryptochrome 1 (18) (see Table 2 and Supplementary Materials for details).

5.3. Dry Seed

The majority of plants from temperate climate zones produce so-called orthodox seeds which
pass through a phase of intensive desiccation and in this state, they are able to survive for periods
ranging from months to tens of years (or even hundreds of years in some cases) [144]. The quiescent
state limits enzymatic activity to a minimal level but H2O2 and other ROS are still produced and
can be accumulated during seed ageing. H2O2 accumulation in seeds may cause significant damage
to storage molecules and loss of viability but the degree to which it accumulates and the sensitivity
to oxidative damage is species specific. For example, H2O2 does not accumulate in Brassica napus
seeds [145].

5.4. Germination

Seed germination is defined as a three-phase process, starting with rapid water intake and
ending with seed coat rupture, usually by radicle protuberance. In imbibed and germinating seeds,
high levels of H2O2 are produced mainly as a product of intensive metabolism in mitochondria,
peroxisomes and glyoxysomes but also by NADPH oxidases and through lipid peroxidation [146].
Though seeds contain both enzymatic and nonenzymatic ROS scavenging machinery to prevent
oxidative damage [147], H2O2 is also needed to remove mechanical and hormonal barriers that inhibit
germination. H2O2 promotes endosperm weakening [148,149] and triggers an increase in gibberellin
biosynthesis and a decrease in abscisic acid levels [150–154]. It also mediates selective oxidation of
mRNA and proteins [155,156], for example irreversible carbonylation of storage proteins that enables
their rapid mobilization via proteasomes [157]. Another key aspect of seed germination, especially
in cereals, is the activation of α-amylase and the promotion of programmed cell death (PCD) in the
aleurone layer. Here, H2O2 is produced by NADPH oxidase and it functions via interplay with DELLA
proteins (proteins with the highly conserved amino acid sequence motif DELLA), key components
of the gibberellin signalling pathway [158–160]. In many respects, the role of H2O2 in germination is
similar to that of a growth regulator and studies of exogenous H2O2 application have demonstrated
that its effect is dose dependent [161–163].

5.5. Root Development

Ample evidence showed that ROS regulates root development via NADPH oxidases [111,164,165].
The phytohormone that is key to the regulation of root growth is auxin, which is well known to mediate
changes in H2O2 levels and thus promote cell growth and lateral root formation [166–168]. However,
a recent study indicated that in mediating the induction of lateral roots, H2O2 acts downstream of
melatonin, an auxin-like indoleamine compound [169]. Root tip growth is also known to be affected
by H2O2 [170,171]. Polar auxin transport seems to regulate H2O2-induced root gravitropism [163]
and exogenous H2O2 treatment can disrupt this sensing, probably due to a change in auxin receptor
distribution [172]. Abscisic acid inhibits primary root growth by activating NADPH oxidases and
thus reducing auxin sensitivity [173] and a RBOH was proposed to interact with abscisic acid in the
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regulation of lateral root growth in Arabidopsis under drought stress [174]. H2O2-mediated root growth
in response to stress was also found in cucumber [175], cotton [176] and rice [177].

5.6. Shoot Development

Shoot growth and development of shoot architecture are driven by phytohormones, especially
auxin and cytokinin, levels of which are highly correlated with environmental conditions. Auxin
participates in cell growth by inducing cell wall peroxidases (peroxidases class III) and NADPH
oxidases to produce ROS and promote cell wall loosening and further cell elongation [178,179]. H2O2

has been reported to mediate apical dominance [180], photosynthesis [181] and leaf epinasty [182].

5.7. Stomatal Movement

Stomata are formed as gaps between pairs of guard cells and changes in guard cell turgor
mediate the opening and closure of the stomatal pore. Stomatal closure is an example of rapid
leaf-to-leaf communication mediated by ROS (e.g., [183]). Under conditions of excessive irradiation,
an autopropagating wave of ROS rapidly transfers a signal to leaves that are not directly exposed
to light and initiates stomatal closure. This closure can be induced by multiple stimuli, including
brassinosteroids [184,185], strigolactones [186], jasmonic acid and salicylic acid [187], CO2 [188],
ethylene [189,190], glucose [191] and interactions among them [192]. The best-described mechanism
is that mediated by abscisic acid that recruits calcium ions, nitric oxide (NO), H2O2 and regulatory
phosphorylation [193,194]. Guard cells generate H2O2 by means of amine oxidases [195], peroxidases
and RBOHs [196,197]. The activity of RBOHs is regulated by Ca2+ binding [198] and phosphorylation
by protein kinase OST1 (OPEN STOMATA 1) [199], which in turn is regulated by abscisic acid and
interacts with a peroxiporin [200,201]. The overall H2O2-mediated machinery is much more complex.
For example, hydrogen sulphide promotes H2O2 production by stimulating RBOH activity [202] but
the presence of flavonols in guard cells and H2O2 scavenging inhibits stomatal closure [203] and it has
been shown that this flavanol accumulation is induced by 5-aminolevulinic acid [204,205].

5.8. Pollination

In generatively propagating plants, H2O2 and other ROS play a key role in pollen navigation
and gametophyte fusion. Angiosperms have developed different reproductive barriers to avoid
self-fertilization, one of the most widespread being self-incompatibility [206]. H2O2 level is elevated
during the incompatible reaction, triggering PCD. In contrast, the compatible reaction decreases the
level of H2O2 in the stigma and the development of the pollen tube is promoted. The further growth
of and the penetration of the ovule by, the pollen tube is guided by quite complicated signalling
machinery, including the FERONIA protein which modulates NADPH oxidase activity [207,208]. ROS
accumulation, especially that of the hydroxyl radical which is largely generated from H2O2, is then
crucial for pollen tube rupture and the release of sperm cells [209].

5.9. Fruit Ripening

The involvement of H2O2 in the ripening process is known but not fully understood. Huan et
al. proposed that H2O2 acts as a signalling molecule in the middle stage of peach fruit development
but that it serves as an important toxic molecule, stimulating lipid peroxidation and oxidative stress,
during the late stage of fruit ripening [210]. Kumar et al. analysed ripening in tomato and found
changes in the redox state during different stages of ripening with a significant increase of H2O2 at the
so-called breaker point (defined by the initial change in fruit colour) [211]. The increase in H2O2 is
most likely regulated by ethylene, the key regulator of fruit ripening that enhances respiration rate
and ROS production [212].
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5.10. Senescence and Cell Death

Senescence ultimately leads to the death of plant organs or whole plants. It is a multistep
process by which the plant recovers and recycles valuable nutrient components that would otherwise
be lost [213]. The role of H2O2 in plant senescence was investigated by Bieker at al., who showed
time-dependent levels of H2O2 and H2O2-scavenging enzymes in senescent leaves [214]. In such tissues
H2O2 mediates PCD together with stress phytohormones like ethylene [215] or salicylic acid [216].
H2O2 levels are transiently elevated at the initial point of leaf senescence and peak again during
the terminal stage [217,218] and this accumulation is reportedly more pronounced inside interveinal
tissue [219]. Furthermore, transgenic lines with lower H2O2 levels display delayed senescence [96,214].

5.11. Stress

The key phytohormones orchestrating plant stress responses are abscisic acid, salicylic acid,
jasmonates and ethylene and all of these phytohormones employ H2O2 in their signalling cascades in an
either upstream or downstream manner [220]. Putative markers of nutrient status, temperature stress
and drought stress share patterns of expression with those of H2O2 metabolism (Table 2) and H2O2

has been implicated in cold acclimation [221], salt stress responses and salt stress tolerance [222–224]
and hypoxia stress [225]. Important targets in these responses are RBOHs [177,226,227]. Recently,
maintenance of acquired thermotolerance was found to be interlinked with generation of H2O2 by
RBOHs [228] and these NADH oxidases also participate in H2O2 production in biotic interactions.
Under pathogen attack, ROS accumulation is involved in PCD of infected and surrounding cells [229].
This hypersensitive response is orchestrated by the phytohormones ethylene, JA and SA (e.g., [214])
but high cytokinin levels also induce H2O2 accumulation [230]. H2O2 has been implicated in the
susceptibility of Brassica napus to Leptosphaeria maculans [231], resistance to root-knot nematode in
tomato [232], systemic virus resistance in Nicotiana benthamiana [233] and reduction of rot in postharvest
citrus fruits [234]. In accordance, plants primed with H2O2 or with a higher basal level of H2O2

formation display enhanced resistance to stressors [42,235].
It is well established that a significant proportion of H2O2-mediated stress response originates

from its decomposition products. This decomposition is enhanced by the presence of transient metal
catalysts through the so-called Haber-Weiss reaction. It is widely postulated that this reaction accounts
for the in vivo generation of the highly reactive hydroxyl radical, which is a prime cause of oxidative
damage to biomolecules (e.g., [9,236]). The hydroxyl radical is one of the strongest oxidants known
and reacts at nearly diffusion-limited rates near the site of its formation [237]. Besides its ability to
damage anything in its close vicinity and generate further radicals, the hydroxyl radical seems to be a
potent effector in calcium and potassium homeostasis, regulation of cell elongation and stress-induced
cell death [111,238–241]. Furthermore, hydroxyl radical-mediated activation of calcium channels is
also proposed to be a part of the so-called ROS-Ca2+ hub, the mechanism that is utilized to perceive
and amplify signal. This self-amplifying system employs Ca2+-dependent phosphorylation of NADPH
oxidases and promotes hydroxyl radical production that, in turn, stimulates Ca2+-influx and NADPH
oxidases’ activity (see for example [242]). The ROS-Ca2+ hub is believed to be central to hypersensitive
response, phytohormonal signalling or abiotic stress responses [115,158,243,244]

Organelles like chloroplasts or mitochondria are key cellular sensors of environmental fluctuations
and integral parts of plant stress responses. They communicate information by signalling to nuclei via
stress-triggered retrograde signals, including ROS (reviewed in Reference [245]). Recent reports show
not only that H2O2 participates indirectly via ROS triggered signals but also that it can transfer from
chloroplasts to nuclei and facilitate photosynthetic control over gene expression [246].
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Table 2. Hydrogen peroxide metabolism genes have expression patterns similar to those of genes related to light signalling, nutrient status, temperature stress, drought
stress and hormonal metabolism. Based on average gene expression profiles in stress-related experiments (ThaleMine [11]) and reference stress-related genes [247].
Numbers indicate the number of analysed genes (numbers in brackets) and the number of detected co-expressed genes (hydrogen peroxide metabolism/candidate
signalling and metabolism genes). See Supplementary Materials for the full list of co-expressed genes.

Nutrient
Stress
(142)

Temperature
Stress

(43)

Drought
Stress

(13)

Light
Signalling

(27)

Abscisic
Acid

Metabolism
(16)

Auxin
Metabolism

(31)

Brassinosteroid
Metabolism

(13)

Cytokinin
Metabolism

(37)

Ethylene
Metabolism

(12)

Gibberellin
Metabolism

(23)

Jasmonate
Metabolism

(17)

Salicylic
Acid

Metabolism
(9)

Strigolactone
Metabolism

(3)

Amine/polyamine
oxidase (15) 11/40 4/6 1/1 7/16 6/5 5/6 5/5 10/15 5/4 4/7 3/5 2/1 0/0

Respiratory burst
oxidase (10) 10/58 6/6 4/1 9/16 5/3 7/14 8/8 9/21 4/4 8/6 3/2 4/4 4/3

Superoxide
dismutase (8) 7/46 5/5 0/0 4/13 5/2 5/9 4/6 5/15 2/3 5/10 1/3 2/2 0/0

L-Gulonolactone
oxidase (7) 7/31 2/2 2/1 4/5 4/5 4/7 2/1 7/10 3/3 3/5 3/4 3/2 2/2

Acyl-coenzyme A
oxidase (7) 5/19 4/6 4/2 4/14 4/3 6/9 4/2 5/11 0/0 5/7 6/6 1/1 2/2

Glycolate oxidase
(5) 5/10 2/1 0/0 5/8 0/0 3/3 4/2 3/4 0/0 2/1 3/2 0/0 3/1

Aldehyde/acetaldehyde
oxidase (5) 4/36 2/1 2/1 4/9 3/3 5/8 4/4 4/13 1/1 3/7 1/2 3/3 1/2

Long-chain-alcohol
oxidase (4) 3/18 3/4 0/0 2/7 2/2 3/5 1/1 3/6 1/1 1/1 1/2 2/2 0/0

Sulfhydryl oxidase
(3) 3/25 3/5 0/0 3/13 3/2 3/8 3/3 3/5 2/2 3/6 3/3 2/1 1/1

Protoporphyrinogen
oxidase (2) 2/21 2/1 0/0 2/5 2/2 2/6 2/3 2/6 2/1 2/3 0/0 1/2 0/0

Pyridoxal
5′-phosphate
synthase (2)

2/28 2/3 0/0 2/9 2/2 2/7 2/3 2/8 2/2 2/5 1/1 2/2 1/1

L-Aspartate oxidase
(1) 1/5 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 1/1

Sarcosine oxidase
(1) 1/1 0/0 0/0 1/1 0/0 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Uricase (1) 1/6 1/1 1/1 1/3 1/1 1/1 1/1 1/1 0/0 0/0 1/1 0/0 1/1
Sulphite oxidase (1) 1/12 1/3 0/0 1/9 1/1 1/5 1/1 1/4 1/1 1/3 1/1 1/1 0/0

Peroxidase (73) 53/106 21/9 9/2 33/25 21/7 35/21 29/13 43/30 21/6 27/15 17/8 18/7 10/3
Peroxiredoxin (10) 8/43 4/7 1/1 5/14 5/3 3/7 3/5 6/15 4/4 7/12 2/4 4/3 0/0

L-Ascorbate
peroxidase (7) 6/44 6/7 2/2 6/16 3/2 4/10 5/7 6/16 3/4 6/9 4/3 3/2 2/2

Glutathione
peroxidase (6) 5/26 3/6 0/0 3/10 1/1 5/8 3/3 3/6 3/2 3/3 1/4 1/1 2/2

Catalase (3) 3/13 2/2 1/1 2/13 1/1 3/5 2/3 3/8 0/0 3/3 2/4 0/0 2/1
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6. Conclusions

H2O2 represents a key signalling molecule, connecting the signalling pathways of multiple
phytohormones and acting as a second messenger in response to diverse conditions modulating
plant growth and development. Its dose-dependent effect on growth clearly indicates that H2O2

is a growth regulator but can we also refer to H2O2 as a putative phytohormone? It is produced
and degraded by the plant in response to stimuli and it is perceived by specialized proteins and
elicits a response at low nanomolar concentrations. However, the limiting factor is its transport.
Though it can be readily transported within a single cell and exported to extracellular space, it is not
believed to serve as a long-distance signal due to its low stability and the presence of H2O2 scavengers.
Exogenous treatment with H2O2 elicits a response and H2O2 gradients are established in plant organs
but it is believed that signal propagation is sequential and that H2O2 reaches only neighbouring
cells [248]. In conclusion, the recent literature offers multiple examples that reveal H2O2 as a versatile
mediator of molecular communication in plants and whether we classify it as a phytohormone or
not, this does not change its importance in the life of plants. There are new perspectives emerging
in the field of H2O2 research with tools being developed for the detection of low micromolar and
even picomolar H2O2 concentrations [249,250] and it is likely that their eventual application in plant
sciences will provide answers to some of our questions about H2O2 transport and concentration
dynamics. Similarly, we may expect that increasing sensitivity in proteomics approaches combined
with imaging or laser microdissection techniques (e.g., [251]) will reveal more H2O2 targets and their
spatio-temporal distribution.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/9/
2812/s1.
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M.B. prepared figures, B.B. reviewed the final text and provided critical comments.

Funding: This research was funded partially by grant TE02000177 (TACR), AF-IGA-IP-2018/014 (Internal Grant
Agency of Faculty of AgriSciences, Mendel University in Brno) and the LQ1601 (CEITEC 2020) project with
financial contribution made by the Ministry of Education, Youths and Sports of the Czech Republic from within
special support paid from the National Programme for Sustainability II funds.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1. Möller, D. Atmospheric hydrogen peroxide: Evidence for aqueous-phase formation from a historic
perspective and a one-year measurement campaign. Atmos. Environ. 2009, 43, 5923–5936. [CrossRef]

2. Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers
during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [CrossRef]

3. Cheeseman, J.M. Hydrogen peroxide concentrations in leaves under natural conditions. J. Exp. Bot. 2006, 57,
2435–2444. [CrossRef] [PubMed]

4. Wrzaczek, M.; Brosché, M.; Kangasjärvi, J. ROS signalling loops—Production, perception, regulation.
Curr. Opin. Plant Biol. 2013, 16, 575–582. [CrossRef] [PubMed]

5. Foyer, C.H.; Bloom, A.J.; Queval, G.; Noctor, G. Photorespiratory Metabolism: Genes, Mutants, Energetics
and Redox Signalling. Annu. Rev. Plant Biol. 2009, 60, 455–484. [CrossRef] [PubMed]

6. Dai, X.; Mashiguchi, K.; Chen, Q.; Kasahara, H.; Kamiya, Y.; Ojha, S.; DuBois, J.; Ballou, D.; Zhao, Y. The
biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase.
J. Biol. Chem. 2013, 288, 1448–1457. [CrossRef] [PubMed]

7. Siddens, L.K.; Krueger, S.K.; Henderson, M.C.; Williams, D.E. Mammalian flavin-containing monooxygenase
(FMO) as a source of hydrogen peroxide. Biochem. Pharmacol. 2014, 89, 141–147. [CrossRef] [PubMed]

8. Dietz, K.-J.; Turkan, I.; Krieger-Liszkay, A. Redox- and Reactive Oxygen Species-Dependent Signaling into
and out of the Photosynthesizing Chloroplast. Plant Physiol. 2016, 171, 1541–1550. [CrossRef] [PubMed]

http://www.mdpi.com/1422-0067/19/9/2812/s1
http://www.mdpi.com/1422-0067/19/9/2812/s1
http://dx.doi.org/10.1016/j.atmosenv.2009.08.013
http://dx.doi.org/10.3389/fenvs.2014.00053
http://dx.doi.org/10.1093/jxb/erl004
http://www.ncbi.nlm.nih.gov/pubmed/16766599
http://dx.doi.org/10.1016/j.pbi.2013.07.002
http://www.ncbi.nlm.nih.gov/pubmed/23876676
http://dx.doi.org/10.1146/annurev.arplant.043008.091948
http://www.ncbi.nlm.nih.gov/pubmed/19575589
http://dx.doi.org/10.1074/jbc.M112.424077
http://www.ncbi.nlm.nih.gov/pubmed/23188833
http://dx.doi.org/10.1016/j.bcp.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/24561181
http://dx.doi.org/10.1104/pp.16.00375
http://www.ncbi.nlm.nih.gov/pubmed/27255485


Int. J. Mol. Sci. 2018, 19, 2812 18 of 30

9. Demidchik, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology.
Environ. Exp. Bot. 2015, 109, 212–228. [CrossRef]

10. Khorobrykh, S.A.; Karonen, M.; Tyystjärvi, E. Experimental evidence suggesting that H2O2 is produced
within the thylakoid membrane in a reaction between plastoquinol and singlet oxygen. FEBS Lett. 2015, 589,
779–786. [CrossRef] [PubMed]

11. Huang, S.; Van Aken, O.; Schwarzländer, M.; Belt, K.; Millar, A.H. The Roles of Mitochondrial Reactive
Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiol. 2016, 171, 1551–1559.
[CrossRef] [PubMed]

12. Mignolet-Spruyt, L.; Xu, E.; Idänheimo, N.; Hoeberichts, F.A.; Mühlenbock, P.; Brosché, M.; Van Breusegem, F.;
Kangasjärvi, J. Spreading the news: Subcellular and organellar reactive oxygen species production and
signalling. J. Exp. Bot. 2016, 67, 3831–3844. [CrossRef] [PubMed]

13. Møller, I.M. Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover and Metabolism
of Reactive Oxygen Species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 561–591. [CrossRef] [PubMed]

14. Gill, S.S.; Anjum, N.A.; Gill, R.; Yadav, S.; Hasanuzzaman, M.; Fujita, M.; Mishra, P.; Sabat, S.C.; Tuteja, N.
Superoxide dismutase—Mentor of abiotic stress tolerance in crop plants. Environ. Sci. Pollut. Res. 2015, 22,
10375–10394. [CrossRef] [PubMed]

15. Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in
plants. J. Exp. Bot. 2002, 53, 1331–1341. [CrossRef] [PubMed]

16. The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45,
D158–D169. [CrossRef]

17. Tanz, S.K.; Castleden, I.; Hooper, C.M.; Vacher, M.; Small, I.; Millar, H.A. SUBA3: A database for
integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis.
Nucleic Acids Res. 2012, 41, D1185–D1191. [CrossRef] [PubMed]

18. Krishnakumar, V.; Hanlon, M.R.; Contrino, S.; Ferlanti, E.S.; Karamycheva, S.; Kim, M.; Rosen, B.D.;
Cheng, C.-Y.; Moreira, W.; Mock, S.A.; et al. Araport: The Arabidopsis Information Portal. Nucleic Acids Res.
2015, 43, D1003–D1009. [CrossRef] [PubMed]

19. Marino, D.; Dunand, C.; Puppo, A.; Pauly, N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012, 17,
9–15. [CrossRef] [PubMed]

20. Suzuki, N.; Miller, G.; Morales, J.; Shulaev, V.; Torres, M.A.; Mittler, R. Respiratory burst oxidases: The
engines of ROS signaling. Curr. Opin. Plant Biol. 2011, 14, 691–699. [CrossRef] [PubMed]

21. Swanson, S.; Gilroy, S. ROS in plant development. Physiol. Plant. 2010, 138, 384–392. [CrossRef] [PubMed]
22. Tripathy, B.C.; Oelmüller, R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav.

2012, 7, 1621–1633. [CrossRef] [PubMed]
23. Sagi, M.; Fluhr, R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 2006, 141,

336–340. [CrossRef] [PubMed]
24. Yun, B.-W.; Feechan, A.; Yin, M.; Saidi, N.B.B.; Le Bihan, T.; Yu, M.; Moore, J.W.; Kang, J.-G.; Kwon, E.;

Spoel, S.H.; et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 2011, 478,
264–268. [CrossRef] [PubMed]

25. Qu, Y.; Yan, M.; Zhang, Q. Functional regulation of plant NADPH oxidase and its role in signaling.
Plant Signal. Behav. 2017, 12, e1356970. [CrossRef] [PubMed]

26. Yoda, H.; Yamaguchi, Y.; Sano, H. Induction of hypersensitive cell death by hydrogen peroxide produced
through polyamine degradation in tobacco plants. Plant Physiol. 2003, 132, 1973–1981. [CrossRef] [PubMed]

27. Tavladoraki, P.; Cona, A.; Angelini, R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine
Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. Front. Plant Sci. 2016,
7, 824. [CrossRef] [PubMed]

28. Fincato, P.; Moschou, P.N.; Spedaletti, V.; Tavazza, R.; Angelini, R.; Federico, R.; Roubelakis-Angelakis, K.A.;
Tavladoraki, P. Functional diversity inside the Arabidopsis polyamine oxidase gene family. J. Exp. Bot. 2011,
62, 1155–1168. [CrossRef] [PubMed]

29. Gupta, K.; Sengupta, A.; Chakraborty, M.; Gupta, B. Hydrogen Peroxide and Polyamines Act as Double
Edged Swords in Plant Abiotic Stress Responses. Front. Plant Sci. 2016, 7, 1343. [CrossRef] [PubMed]
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