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Simple Summary: Essential oils are regarded as possible substitutions of antibiotics. Some of them 
show strong antibacterial effects, and other positive effects in the nutrition of monogastric animals. 
The article aims to summarise the final state of the art concerning their pharmacokinetics in the 
organism. Last but not least, great attention is paid to their potential toxic effects. 

Abstract: Essential oils (EOs) are now a hot topic in finding modern substitutes for antibiotics. Many 
studies have shown positive results and confirmed their high antibacterial activity both in vitro and 
in vivo. Deservedly, there is an attempt to use EOs as a substitute for antibiotics, which are currently 
limited by legislation in animal breeding. Given the potential of EOs, studies on their fate in the 
body need to be summarized. The content of EO’s active substances varies depending on growing 
conditions and consequently on processing and storage. Their content also changes dynamically 
during the passage through the gastrointestinal tract and their effective concentration can be 
noticeably diluted at their place of action (small intestine and colon). Based on the solubility of the 
individual EO’s active substances, they are eliminated from the body at different rates. Despite a 
strong antimicrobial effect, some oils can be toxic to the body and cause damage to the liver, kidneys, 
or gastrointestinal tissues. Reproductive toxicity has been reported for Origanum vulgare and Mentha 
arvensis. Several publications also address the effect on the genome. It has been observed that EOs 
can show both genoprotective effects (Syzygium aromaticum) and genotoxicity, as is the case of 
Cinnamomum camphor. This review shows that although oils are mainly studied as promising 
antimicrobials, it is also important to assess animal safety. 
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1. Introduction 

Essential oils (EOs) are natural extracts, whose origin is folk medicine. In general, their use is 
eco-friendly, non-toxic and consistent with nature. Today’s scientific research on EO efficiency is 
based on different traditional healing systems all over the world. Many preclinical studies have 
documented antimicrobial, antioxidant, anti-inflammatory, and anticancer activities. Except for the 
known toxic ingredients, EOs are considered generally regarded as safe (GRAS) in mammals [1,2]. 
Although many research activities are focused on the toxicity of EOs against insects [3] or aquatic 
organisms. EOs are unique in that each type differs in the composition of active substances and their 
concentrations. Currently, approximately 3000 substances in EOs have been identified. The chemical 
composition of EOs depends on the ambient conditions of plant growth and genetic diversity, which 
makes it difficult for exploration and commercial exploitation [4,5]. Their representation, 
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combination and quantity results in their properties and behaviour in the organism. Thus, breeding 
programs for pharmaceutical purposes seem to be a hot topic of research [6–8]. 

Recently, EOs has become an alternative to antibiotics in animal feed. Partly to prevent the 
antibiotic resistance of microorganisms, but also through the legislative restriction of the frequent use 
of zinc medication doses [9]. In several in vitro and in vivo studies, it could be found that extracts 
from rosemary, oregano, dill, cinnamon, eucalyptus, garlic, clove, or thyme were able to modulate 
ruminal methane emission to various extents, primarily by acting on methanogenic microflora [10]. 
The mechanisms of action have been summarized in many review articles [11–13]. Briefly, these 
publications describe that EOs components can disrupt the bacterial membrane, damage their 
metabolic processes or produce reactive oxygen species (ROS) and prevent the synthesis of bacterial 
toxins [14]. Conversely, some EOs have shown positive effects on microbes [15–17]. Moreover, the 
efficacy of EOs on poultry and swine production have been identified and reviewed [18–20]. The 
cellular protective effects of EOs against drugs or xenobiotics are also described in the literature [21–
24]. 

The results of some studies demonstrated the efficacy of EOs as feed additives in animal 
breeding [25]. However, we have found several articles that address their potential toxicity. To 
provide a comprehensive overview and assess the safety of animals, we bring insights into the issues 
of their production and pharmacokinetics in mammal organisms. 

2. Influence of EOs Production on Their Chemical Composition 

Due to the EOs complexity, more recent attention has been focused on the choice of extraction 
procedure that could affect their yield and character. Currently, conventional methods 
(hydrodistillation, steam distillation, hydro diffusion, and solvent extraction) are alternated by green 
and sustainable extraction procedures. Benefits include shorter extraction times, lower energy 
consumption, low solvent usage, and less carbon dioxide emissions [26,27]. Gentle extraction 
approaches, such as CO2 extraction, retain the antioxidant activity of active substances [28]. 
Nevertheless, successful extraction does not depend on the time of extraction but from an individual 
approach to the plant material [29]. It has been suggested that levels of the choice of extraction agent 
also plays a significant role [30]. Comparative studies of the extraction of various oils confirmed the 
high variability in the composition of the extracted substances that results in their varied 
effectiveness. The differences in extraction yield are mainly influenced by physicochemical 
parameters (temperature, time, pH, extraction dynamics), by the technique used or by the inclusion 
of other steps, such as ohmic heating, the assistance of ultrasound, or ionic liquids [31–39]. 

Factors found to be influencing EOs composition during storage have been explored in several 
studies. Notably, the exposure to EOs to atmospheric oxygen and UV radiation is one of the major 
causes of chemical change leading to loss of their efficiency [40–43]. It has been demonstrated that 
some phenolic components of EOs are oxidized by contact with reactive oxygen species (ROS) 
producing very reactive phenoxyl radicals. These types of radical reactions are enhanced by the 
presence of transition metal ions, such as Fe2+, Cu2+, Zn2+, Mg2+, or Mn2+ [44–46]. In this regard, some 
studies have shown higher oxidative stability of ethanolic EOs. If storage temperature does not 
exceed 10 °C, then EOs will maintain their stability for up to eight weeks [47,48]. A growing body of 
literature has investigated the protection of EOs against oxidation. In this context, non-ionic 
surfactants, preservatives or stabilizers can be applied [49,50]. The effect has also been demonstrated 
in the use of gamma radiation with a dose of 20 to 30 kGy. Although results have confirmed an 
increase in antioxidant activity, there were reduced antibacterial effects due to changing certain active 
substances caused by gamma radiation [51]. Instead of chemical-physical protection against 
oxidation, the encapsulation seems to be one of the most perspective methods for preventing the 
stability changes [52]. Noori et al. used randomly methylated beta-cyclodextrin for encapsulation of 
Zingiber officinale EOs. Comparative tests have confirmed increased antibacterial activity against E. 
coli and S. aureus, and antioxidant activity [53]. 
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3. EOs Pharmacokinetics in the Organism 

An understanding of the pharmacokinetics of EOs in the organism is critical for consideration 
its effectivity and toxicity. The main obstacle to use EOs as an animal antibiotic is that the active 
substances enter the intestines at a concentration that is less than inhibitory. Commercial preparations 
often offer complex mixtures with bonded EOs or the oils are mixed into feed rations. During the 
digestion process, the individual active substances of EOs are degraded and metabolized. Generally, 
the kinetics of this process is based on the EOs composition. 

EOs are complex mixtures of organic compounds including volatile compounds (such as 
monoterpene and sesquiterpene hydrocarbons, and their oxygenated derivatives) and of non-volatile 
residues (such as hydrocarbons, fatty acids, sterols, carotenoids, waxes and flavonoids) [54]. The 
solubility of the individual active substances has the greatest effect on absorption in the organism. In 
the gastrointestinal tract, the EOs compounds tend to interact with digested food. As a result, active 
substances could escape to solubilization and adsorption in the stomach. Moreover, the kinetics rate 
depends on the activity of digestive enzymes to release the EOs components from the fatty acid bonds 
[55]. 

Terpenoids and steroids (carotenoids, phylloxanthins, triterpenoids, and monoterpenes) show 
lipophilic character. Lipophilic molecules of EOs tend to form micelles, and they are digested in the 
small intestine together with other lipids. Moreover, their lipophilic character enables them to have 
easy penetration via the epithelial cell membrane. Thus, the molecule forms are delivered to the small 
intestine where are released and hydrolysed together with lipids [56,57]. 

Hydrophilic EOs components (polyphenols, flavones, flavanols, lignans, aromatic acids) are 
generally bonded to saccharides. These glycosides are metabolised in the small intestine, and their 
ligands are accessible to enterocytes. Non-absorbed aglycones metabolic pathway passes through the 
liver, where it is absorbed, and subjected to enzymatic degradation. Besides digestive processes, 
anthocyanins, isoflavones, tannins metabolism depends on their chemical nature (such as 
glycosylation) and intestinal microbiota [58–60]. Phenolic compounds are known to be unstable in 
GIT, and they are an easy subject to interaction with other food constituents, or they are hydrolysed 
during the small intestine passage. [61]. Free hydrophilic molecules are transported into enterocytes 
via passive diffusion or active transport in the duodenum. 

A major proportion of EOs compounds are eliminated by renal excretion, as evidenced by an 
increase in urine analytes [62]. Non-absorbed and non-metabolized polyphenols leave the body in 
the faeces [60]. Some studies have reported that the highest concentration of active compounds from 
EOs is two hours after administration, and after five hours, the substances have been already 
effectively eliminated from the bloodstream. For example, the half-life of carvacrol, thymol, eugenol, 
and trans-cinnamaldehyde ranged between 1.84 and 2.05 h, whereas trans-cinnamaldehyde showed 
the fastest disappearance [63]. Moreover, it was found that the co-existing compounds in Rhizoma 
Curcumae extract could change the pharmacokinetic behaviours [64]. Mason et al. found that residues 
of the main of oregano and thyme EOs were present up to 13 days in dairy cattle [65,66]. It has been 
noticed that early absorption could lead to decreasing of antimicrobial effects in the gastrointestinal 
tract [66]. In this regard, more attention should be paid to the protection of active substances from 
the undesirable metabolic transformation. 

4. EOs Toxicity 

More recently, literature has emerged that offers contradictory findings of the toxicity of EOs in 
vitro and in vivo. The discussed health risk includes effects such as respiratory disorders, skin 
sanitiser, carcinogens, reproductive toxicity, or organ toxicity. In this context, the risk assessment 
should be taken into account; risk identification, dose-response evaluation, time of exposure, and 
mechanism of toxicity. The first phase of testing includes in vitro cytotoxicity tests of potentially 
harmed tissues. Subsequently, the tested substances could be applied in an organism. 

EOs have always been used in traditional healing, making many people consider them safe. 
Although some toxic essences have been deliberately abused for their effects. For example, 
pennyroyal oil induces abortions and hallucinations, lemon oil is considered as a psychedelic [67,68]. 
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EOs potential to substitute antibiotics are recognized as safe with a long tradition in herbal medicine. 
In many cases, highly aromatic oils were dosed at low concentrations, which do not cause any 
damage due to their difficulty to eat. However, poisoning by EOs has been recorded [69]. On the one 
side, their encapsulation or other kinds of masking their aroma could be risky. On the other side, 
some studies use the ability of encapsulated EOs to target release, transdermal transfer, enhance 
permeability effects, or for tissue targeting [70]. 

Toxicity assessment is complicated by the high variability of the active substance content, which 
can be up to hundreds in one type of oil [71]. Only a few articles found proposed mechanisms of 
toxicity. In general, the mechanisms of the cytotoxic effect of EOs are the production of ROS, blockade 
of sodium channels (e.g., for thymol 150 µM IC50, skeletal muscle cells), cell cycle disruption, 
mitochondrial damage, DNA aberration, and initialization of NF-kB cascade leading to apoptosis 
induction [72]. Studies conducted on spermatozoa confirmed that the most sensitive to the dose of 
EOs is sperm motility, and membrane integrity was minimally affected with a dose of Melaleuca 
alternifolia EOs at a concentration of 0.6 mg/mL [73]. Other oils, such as (R. officinalis and T. capitata), 
have also shown similar effects [74,75]. Another toxicological investigation has shown an interesting 
effect that EOs components in Salvia officinalis (α-pinene, camphene, limonene, 1,8-cineole, camphor, 
borneol, bornyl acetate, α-humulene, viridiflorol, humulene epoxide II, and manool) may exhibit 
dualistic pharmacological properties. The capability of both neurotransmitter excitatory and 
inhibition mechanisms in the control of anxiety [76]. Atsumi et al. has shown that the molecular 
structure plays a role in the toxicity of the active ingredients. Eugenol, the major component of clove 
EOs, shows much higher cytotoxic effects in its isoform [77]. Moreover, the toxic effects of EOs could 
be also given by minor ingredients, rather than the most abundant compounds [78]. The 
comprehensive overview of the studies is given in Table 1. 

Table 1. Cytotoxic effects of EOs (essential oils). 

EOs Main Substances Cell Line Dose Time Ref. 
Lavandula angustifolia linalool 28.9%; linalyl acetate 32.9% 

human 
lymphocytes 

0.3 L/mL 24 h [79] Helichrysum italicum α-Pinene; camphane; β-Pinene; 
myrcene; p-cyneme; borneol; thymol 

Alpinia brevilabris α-Pinene 10.1%; β-Pinene 35.3%;  

human lung 
fibroblasts 

IC50 90 µg/mL 

24 h [80] 

Alpinia cumingii 
α-Pinene; β-Pinene; ρ-Cymene; α-
Terpinene; α-Pinene; α-Cubebene 

IC50 70 µg/mL 

Alpinia elegans 
α-Pinene; β-Pinene; ρ-Cymene; α-
Terpinene; α-Pinene; α-Cubebene; 
1,8-Cineol 

IC50 30 µg/mL 

Callicarpa micrantha 
β-pinene; caryophyllene epoxide; 
aristolochene; borneol; linaloo 

IC50 85 µg/mL 

Cinnamomum mercadoi Cinnamaldehyde; Camphene;  
Linalool; α-phellendrene 

IC50 215 µg/mL 

Piper quinqueangulatum pinene; khusimene; cadinene  IC50 40 µg/mL 
Alpinia oxymitra Epicatechin; Galloepicatechin 

human lung 
fibroblasts 

IC50 10 µg/mL 

24 h [81] 

Boesenbergia rotunda 
2′,4′-dihydroxy-6-methoxychalcone; 
5-hydroxy-7-methoxyflavanone; 5,7-
dihydroxyflavanone 

IC50 20 µg/mL 

Cinnamomum 
cambodianum 

Cinnamaldehyde; Camphene; 
Linalool; α-phellendrene 

IC50 110 µg/mL 

Citrus lucida d-limonene IC50 180 µg/mL 

Limnophila aromatica 
z-ocimene 39.2%; terpinolene 17.2%; 
camphor 12.9% 

IC50 15 µg/mL 

Rhodamnia dumetorum α-, β-, and γ-eudesmol; α- and β-
pinene 

IC50 2 µg/mL 

Sindora siamensis 
α-copaene 41.3%; β-cubebene 15.4%; 
β-cadinene 7.2% 

IC50 6 µg/mL 

Cinnamodendron dinisii 1,8-cineole and sabinene. IC50 30 µg/mL 

Gallesia integrifolia 
dimethyl trisulfide 15.49%; 2,8-
dithianonane; 52.63%; lenthionine; 
14.69% 

Chinese 
hamster ovary 

cell lines 
IC50 7 µg/mL 72 h [82] 

Schinus molle L. 
α-Phellandrene 45.7%; β-
phellandrene 13.6%; Hmonene13.4%; 

human 
lymphocytes 

LD50 30.07 µg/mL 72 h [83] 
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α-phellandrene 22.1%, β-
phellandrene 10.4%; limonene 9.6%; 
α-cadinol 5.6% 

human 
macrophage  

LD50 42.07 µg/mL 

Citrus bergamia Limonene 37.2%; Linalyl acetate 
30.1%; Linalool 8.8%  

mouse 
fibroblast cells 

EC50 0.0023% v/v 

4 h [84] 
Litsea cubeba citral; geraniol; neral. EC50 0.011% v/v 

Citrus X sinensis A-pinene; Citronellal; Geranial; 
Limonene; Linalool; Myrcene; Neral 

EC50 0.009% v/v 

Cymbopogon citratu citral A; citral B; neral  EC50 0.013% v/v 

Satureja sahendica Bornm 
Thymol 40%; gamma -terpinene 28%; 
and rho-cymene 22% 

human cancer 
cell 

IC50 15.6 µg/mL 24 h  [85] 

Rosmarinus officinalis 1,8-cineole; a-pinene; camphor dermal cell IC50 5 mL/kg 72 h [86] 

Piper aduncum pinene; khusimene; cadinene  erythrocytes 
observed harmful 
effects 200 µg/mL 

24 h [87] 

Achillea millefolium L. thymol 26.47% macrophages IC50 22.11 mg/mL 24 h [88] 

Thymus munbyanus 
thymol 52.0%; gamma-terpinene 
11.0%; rho-cymene 8.5%; carvacrol 
5.2% 

human 
spermatozoa 

500 µg/mL no 
observed toxicity 

30 
min 

[89] 

Satureja khuzistanica Carvacrol 92.87%; limonen 1.2% cancer cell lines IC50 125 µg/mL 24 h [90] 

IC50 = half maximal inhibitory concentration; LD50 = median lethal dose; EC50 = half maximal 
effective concentration. 

Although extensive research has been carried out on the antibiotic potential of EOs, there are a 
few studies elucidated their interaction with nucleic acids. The available studies show that there are 
two phenomena. At first, genoprotective effect against xenobiotics when EOs have been shown to 
prevent DNA mutations and aberrations [91–93]. Secondly, genotoxicity—mostly for those who are 
known for their toxicity such as Syzygium aromaticum, Artemisia absinthium or Salvia divinorum. Model 
eukaryotic organism S. cerevisiae have been analysed on genotoxic effects of Origanum compactum, 
Artemisia herba alba and Cinnamomum camphora EOs. The primary outcomes of the study suggested 
that EOs alone caused slight mutations in the cytoplasm, but not in the nucleus. In combination with 
mutagenic agents (UVB and 8-methoxypsoralen) plus UVA radiation and methylmethane sulfonate, 
cytoplasmic mutations and mitochondria damage were strictly increased, but nuclear DNA showed 
no mutagenic changes in combination with genotoxic treatment and EOs [94]. 

In Vivo Toxicity 

In vivo assays are predominantly conducted to evaluate EOs potential to replace antibiotics both 
in animals and humans. An overview of publications that monitored the effects of EOs in vivo is 
given in Table 2. EOs are most commonly associated with hepatotoxicity, nephrotoxicity, changes in 
the blood vessels, and oxidative stress that occur as a result of acute intoxication. Some EOs have also 
been associated with reproductive toxicity. It was found that Origanum vulgare EOs at a concentration 
of 27% v/v affected the size of the genitals. The authors suggested a connection with the possible 
formation of metabolic syndrome and a decrease in testosterone levels. The highest dose also reduced 
sperm concentration and induced changes in Leydig cells. Thus, male rat fertility decreased as in a 
dose-depended manner of the EOs [95]. These results were positively correlated with Shama A. J., 
who confirmed the contraceptive effects of Mentha arvensis at a dose of 10 mg/day/mice treated for 
20–60 days. It is also known that some other EOs or their components affect the reproductive system. 
A new study demonstrated the prenatal toxicity of Verbena EOs. Embryo-fetotoxicity retardation 
was observed as evidenced by the decrease in foetal weight, head cranium, tail length, and higher 
incidence in the pre-and post-implantation loss. Some foetal skeleton abnormalities such as 
incomplete ossification of the skull, sternebrae, and metatarsal bones were observed in foetuses of 
the 2000 and 3000 mg/kg groups. Flavonoids such as apigenin and luteolin have been identified as 
major toxicants for the reported prenatal developmental toxicity [96]. 

In addition to actual toxicity, sub-chronic doses have been monitored. During the 90-day 
administration of carvacrol/thymol (10:1) at doses of 5, 100 and 200 mg/kg b.w./day, no animals died 
or showed deviations from the control group. The monitored parameters were overall health state, 
weight, feed consumption, blood count and histopathological findings. Only glucose levels were 



Animals 2019, 9, 352 6 of 14 

decreased, and females had enlarged ovaries in the treated group. The similar results were obtained 
for Pinus eldarica EOs in the dose 125 and 250 mg/kg for 28 days and Satureja khuzestanica in the dose 
for 14 days 0.2–0.6 mL/kg [97,98]. These doses are also found to be tolerable in palatability studies, 
and also below the LD50, which is approximately 2000 mg/kg. 

Compared to antibiotics, EOs are tolerable at higher doses. In general, LD50 for antibiotics ranges 
from units up to hundreds of mg/kg for acute administration. The sub-acute toxicity of most 
antibiotics brings a number of side effects affecting important internal organs. In addition, the 
discharging of the intestinal microbiota and the resistance of pathogenic microorganisms is still an 
unsurpassed negative side. Despite the enormous potential of EOs to serve as antibiotic admixtures 
or feeds, the Guidelines of the Scientific Committee on Food for Safety Assessment (EFSA, 2016) 
recommend genotoxicity and subchronic studies at the core of tests. 

Table 2. Overview of the effects of EOs tested in vivo.  

EOs Main Substances Organism Dose Effects Ref. 

Syzygium aromaticum 

ugenol (64.74%), caryophyllene 
(14.36%), 3-Allyl-6-
methoxyphenyl acetate (13.28%), 
1,4,7, Cycloundecatriene, 1,5,9,9-
tetramethy (2.55%). 

rats 
intraperitoneal 
injection, 0.125 

mg/kg 

higher levels of AST, 
ALT, ALP, decrease of 

AST hepatotoxicity 
[21] 

Commiphora myrrha 

a-pinene, cadinene, limonene, 
cuminaldehyde, eugenol, m-
cresol, heerabolene, acetic acid, 
formic acid 

mice injection 80 µL 
pathological changes 
on liver and kidney, 

weight loss 
[99] 

Calendula officinalis 

triterpenoid esters, carotenoids 
flavoxanthin, auroxanthin, lutein, 
zeaxanthin, flavonol glycosides, 
triterpene oligoglycosides, 
oleanane-type triterpene 
glycosides, saponins, 
sesquiterpene glucoside 

rats 
20 mL/kg body 

weight 
higher levels of AST, 

ALT, ALP 
[100] 

Mentha mozaffarianii 

α-Pinene 0.6%; Camphene 0.2%; 
Sabinene 0.5%; β-Pinene 1.0%; 
Myrcene 0.3%; Ocymene 0.6%; 
Limonene 0.4%; 1,8-Cineol 11.7%; 
Linalool 11.1%; Menthone 1.9%; δ-
Terpineol 0.3; Borneol 1.0%; 4-
Terpineol 0.2%; α-Terpineol 3.4%; 
Pulegone 0.3%; Piperitone 51.0% 
Thymol 1.0%; Piperitenone 8.6%; 
Piperitenone oxide 2.3%; Trans-
Jasmone 1.9%; β-Caryophyllene 
0.8% 

rats 
2000 mg/kg 

diet 

higher level of glucose, 
cholesterol, ALT, AST, 
ALP, and TSH; tissue 

damage of liver, 
kidney, stomach 

[101] 

Trachyspermum ammi 
Thymol 58,9%; p-cymene 24.02%; 
γ-terpinene 13.77 %; β-pinene 
1.90% 

mice 
7% acute 
dermal 

irritation 
defined erythema [102] 

Boenninghausenia 
albiflora 

propyl ether 22%; linalool 22%; 
cinnamaldehyde 15%; cinnamyl 
alcohol 5% 

rats 400 mg/kg diet 

changes in the clinical 
picture (RBC, MCV, 
triglycerides, HDL, 

LDL, urea, and 
sodium) 

[103] 

Cuminum cyminum L. 
Cuminaldehyde; cymene; 
terpenoids 

rats 
1000 mg/kg 

diet 
increase of serum 

levels of ALT 
[104] 

Satureja khuzestanica 

Carvacrol 11%; Thymol  
28.2%; γ-terpinene 16%; ρ-cymene 
19.6%; β-pinene  
4.5%; Sabinene 4.4% 

mice 
injection 1.79 
mL/ kg body 

weight  
death [98] 

Artemisia vulgaris L. Camphor; 1,8-cineole rats 
10.3–23.1 

mg/kg body 
weight 

anaemia [105] 
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Aquilaria crassna 

sabinene; linalyl acetate; 
anisaldehyde; perillaldehyde; 3-
carvomenthenol; 3-
carvomenthenone; bornyl acetate; 
p-mentha-1,3-dien-7-ol; cuminic 
acid; p-mentha-1,3-dien-7-av 

mice 
2000 

mg/kg/day 
orally 

weight loss [106] 

Salvia officinalis 
Camphor 25%; 1,8-cineole  
7.5%; α-tujone 22.2% 

rats 
30 mg/kg body 

weight 

induced 
hepatotoxicity, lipid 

peroxidation  
[107] 

Curcuma longa 
cinnamic acid; 5 malonyl-CoA; p-
coumaric acid  

rats 
5000 mg/kg 
body weight 

No changes in the 
monitored parameters 

[108] 

Piper vicosanum 
monoterpenoids 56.0–62.6%; 
limonene 40.0–45.5%; 1,8-cineole 
10.4–15.0% 

rats 
2 g/kg body 

weight 
[109] 

Lavandula 
angustifolia 

Linalool, Camphor and 1,8-  
cineole 

mice, 
rabbits 

2000 mg/kg 
diet 

[110] 

Cinnamomum 
zeylanicum 

Cinnamaldehyde, Camphene,  
Linalool and α-phellendrene 

mice 
1.52 mL/kg 

body weight 
[111] 

Origanum vulgare 
Carvacrol 80%; Thymol  
64%; γ-terpinene 52%; ρ-cymene 
52% 

rats 
200 mg/ kg 

body weight  
[112] 

Satureja khuzestanica 

Carvacrol 11%; Thymol  
28.2%; γ-terpinene 16%; ρ-cymene 
19.6%; β-pinene  
4.5%; Sabinene 4.4% 

mice 
0.2, 0.4 and 0.8 

mL/ kg diet 
[98] 

Piper glabratum  pinene 12.0%; khusimene 12.1%; 
cadinene 13.2% 

mice 
5000 

mg/kg/body 
weight 

[113] 

Lavandula stoechas  Linalool, Camphor and 1,8-
cineole 

rats 
200 mg / kg 
body weight 

[114] 

Ocimum sanctum L. 

Oleanolic acid, Ursolic acid,  
Rosmarinic acid, Eugenol, 
Carvacrol,  
β-caryophyllene and β-elemene. 

mice 
LD50 4571.43 

µL/kg 
death  [115] 

Mentha mozaffarianii 
Linalool 51.8%; Epoxyocimene  
19.3%; Sesquiphellandrene  
9.4%; Cadinene 4.0% 

rats 
LD50 greater 

than 2000 
mg/kg 

increases blood 
glucose, cholesterol, 
ALT, AST, ALP, and 

TSH 

[101] 

Lavandula stoechas 1,8-cineole; lavandulol; necrodane  rats 200 mg/kg  
No changes in the 

monitored parameters 
[114] 

Origanum vulgare Carvacrol 80%; Thymol 64%; γ-
terpinene 52%; ρ-cymene 52% 

rats 3% diet 
No changes in the 

monitored parameters 
(spermatozoa) 

[95] 

Origanum vulgare Carvacrol 80%; Thymol 64%; γ-
terpinene 52%; ρ-cymene 52% 

rats 200 mg/kg b.w. 

Data revealed no 
mortality and no 
treatment-related 

adverse effects of the 
EOs in food/water 

consumption, body 
weight, haematology, 

biochemistry, 
necropsy, organ 

weight and 
histopathology. 

[112] 

Ocimum gratissimum 

Oleanolic acid; Ursolic acid;  
Rosmarinic acid; Eugenol; 
Carvacrol;  
β-caryophyllene; β-elemene 

rats 
1500 mg/kg 
body weight 

No changes in the 
monitored parameters 
(functional damages to 

stomach and liver) 

[116] 

Thymbra capitata (L.) 
1,8-cineole 19.60%; Camphor 17%; 
α-pinene 15.12%; Borneol  
8.17%; Verbenone 9.55% 

boars 0.6 mg/mL 
No changes in the 

monitored parameters 
(spermatozoa) 

[74] 

Eucalyptus staigeriana 
Cineole 46.8%; α-pinene 28.9%; d-
limonene 4.9% 

rats 
LD50 3.495.9 

mg/mL 
death  [117] 
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Eucalyptus 
Eucalyptus 

Cineole 6.2%; α-pinene 8.3%; ρ-
cymene 28.6%; Cryptone 17.8%; 
Cuminaldehyde 6.5% 

rats 
LD50 2.334 
mg/kg b.w. 

death  
[118] 

Eugenia caryophyllus eugenol; isoeugenol; eugenone; β-
caryophyllene 

rats 
LD50 3.597 
mg/kg b.w. 

death  

Pinus eldarica Thymol 78.8%; karvarol 6,2% rats 
LD50 higher 

than 22.5 
mL/kg b.w. 

No changes in the 
monitored parameters 

[119] 

Verbena officinalis 1-octen-3-ol 30.76%; Verbenone 
20.49% 

pregnant 
female 

rats 

3000 mg/kg 
diet 

asymmetrical 
distribution of 

implantation sites and 
embryos 

[96] 

Verbena litoralis 
Kunth 

Epicatechin; Galloepicatechin; 
Cadinene 

rats 400 mg/kg diet only increase in AST [120] 

Lantana camara 

bicyclogermacrene 19.4%; 
isocaryophyllene; 16.7%; 
valencene 12.9%; germacrene D 
12.3% 

guinea 
pigs 

24 mg/kg b.w. 

decrease in weekly 
body weights, 

haematology, liver and 
kidney marker 

enzymes (ALT, AST, 
ALP and creatinine) 

[121] 

AST = aspartate transaminase; ALT = alanine transaminase; ALP = alkaline phosphatase; TSH = 
hydroid stimulating hormone; RBC = red blood cell count; MCV = mean corpuscular volume; HDL = 
high-density lipoprotein; LDL = low-density lipoprotein. 

5. Conclusions 

As a result of the global increase in the demand for antibiotics, EOs are continually being tested 
for their antimicrobial effects. Several methods for their production have been invented as well as 
measures to eliminate the extraction of antinutritional or toxic substances contained in natural 
flavours. Development and research are also growing in the field, for their use in controlling 
pathogens, or their pharmacological use. The weakness of this research is so far insufficient 
information about their metabolism in the organism. Some hydrophilic oil components are already 
absorbed in the stomach, whereas lipophilic oils can pass to the intestine where their site of action is 
most predicted. The chemical nature of some active substances predisposes them to interactions with 
other food ingredients and thereby deteriorating their availability. Encapsulation and the use of 
nanotechnologies seem very promising in this direction. Speculation also leads to their toxicity. 
Because they are considered GRAS, there is no attempt to investigate their harmful effects on the 
body, which can cause adverse reactions to organisms. EOs are a considerable issue that needs to be 
explored in broader contexts and involving more disciplines. 
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