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Abstract
We performed a comparative paired catchment study of three headwater upland forest micro-catchments with different forest 
types in the precipitation-abundant year 2020. The analysis was based on baseflow separation and resulting baseflow index 
(BFI). The year 2020 was intentionally chosen as a way to reflect the expected effects of climate change in the region where 
more extreme hydroclimatic events are expected. Our team demonstrated that in case of hydroclimatic extremes, there are 
significant differences in the runoff response from these catchments, depending especially on the tree species composition 
in the forest stands. Three forest types with the predominance of European beech (Fagus sylvatica), Norway spruce (Picea 
abies), and mixed forest were analyzed. The observed different values of BFI were interpreted in relation to the ability of 
forest stands to retain water and slow runoff in extreme runoff events determined by the stormflow component as an indica-
tion of their flood control efficiency. A significantly worse flood control efficiency and an overreaction of runoff response to 
precipitation events were observed in the spruce catchment. This also suggests that the spruce catchment is more prone to 
suffer from drought since twice as much water was lost from the system during extreme hydroclimatic events as opposed to 
the other two with less spruce in the stands and less water is thus available for groundwater recharge.

1 Introduction

One of the fundamental impacts of global climate change 
(GCC) is its effect on forests. Forest stands in Europe are 
an important factor in the water cycle of the landscape; they 
significantly influence the parameters of the precipitation-
runoff process and the water balance. The influence of for-
est vegetation on catchment runoff characteristics is well 
described in past and current literature, both in general terms 
(Winkler et al. 2021; Wang et al. 2019; Zhang et al. 2017) as 
well as during periods of low flows (Deutscher and Kupec 
2014) and peak flows (Černohous et al. 2017). Streamflow 
characteristics are dominantly influenced by climatic factors 
(Miller et al. 2021; McMillan 2019; Woodhouse et al. 2016), 
geology, and land cover (Kuentz et al. 2017). In landscape 
water management, the influence of forest vegetation on flow 
quantities is more important than the annual volumes of 
water bound in vegetation (Hrachowitz et al. 2013). This all 
leads to forests being a key agent in mitigating the negative 

effects of GCC on the landscape scale. Since 2010, the dry-
ing out of forests in the region has been occurring due to 
the increase in temperature and associated increase of the 
evapotranspiration fraction (Kupec et al. 2021), manifested 
in decreasing ratio of runoff from the system (Bloomfield 
et al. 2019). It seems that with the changing conditions, the 
stressed forest stands are losing some of its ability to control 
the water balance parameters and that their role in the land-
scape is changing (Kupec et al. 2021). To sustain European 
forests, it is important to understand why and how these 
changes are propagated.

In Europe, there are two main groups of forest tree species 
— evergreen and deciduous, which both affect the water bal-
ance differently. The basic influence of evergreen and decid-
uous tree species on the hydrological cycle under normal 
weather conditions can be summarized as follows (Brink-
mann et al. 2016; Rötzer et al. 2017): deciduous trees reach 
higher transpiration rates for a shorter part of the year (short 
growing season), evergreen trees exhibit lower transpiration 
but for a longer part of the year (longer growing season), 
and evergreen trees have higher interception all year long. 
In monocultures of Norway spruce (Picea abies) (the main 
evergreen species in the region), the shallow rooting trees, 
low quality litter, and dense rooted floor limit the infiltration 
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into soils (Juřička et al. 2022), especially in periods of high 
precipitation (Du et al. 2019). One of the expected mani-
festations of GCC is the increasing extremity of weather 
(Ummenhofer and Meehl 2017), notably more frequent and 
more extreme precipitation and heat waves and droughts 
(McMillan et al. 2018). The influence of healthy forest veg-
etation on hydrological extremes in hydrologically stand-
ard years is described in the literature (Filoso et al. 2017; 
Krejčová 1994). However, in recent years in Europe, forests 
are subject to long-term stress due to the increasing lack of 
available water (Senf et al. 2020). While the forest stands 
consisting of tree species that are found in their ecologically 
optimal conditions are relatively resistant to these impacts 
or capable of adaptation, stands of tree species occurring on 
the border of their ecological optimum are recently showing 
signs of damage and degradation as a result of the impacts 
of GCC, e.g., the current bark beetle calamity in the Czech 
Republic (Zahradník and Zahradníková 2019). What would 
be the reaction of current forest stand types already nega-
tively affected by the effects of GCC to extreme weather 
during extreme years is less well understood.

In 2020, the Křtiny catchment received the highest pre-
cipitation during the last 70 years (1950–2020) while Kanice 
and Útěchov catchments received the 2nd highest precipita-
tion recorded during this period. For both catchments, this 
year was the 5th warmest in the 1950–2020 period (Cornes 
et al. 2018). We intentionally used this year only for the 
analysis of runoff response to extreme hydroclimatic events 
in three experimental headwater catchments with different 
tree species composition in the forest stands. The year 2020 
was the most recent year where a high number of extreme 
precipitation events happened. Thus, the results can be a 
good indication of what can be expected in the future. We 
dealt with evaluation of the influence of forest vegetation 
on the transformation of hydrological extremes mainly by 
baseflow separation and baseflow index (BFI). The defini-
tion of baseflow is perceived differently by different authors 
(Smakhtin 2001; McMillan 2019). The basic idea of separat-
ing baseflow (the part of streamflow affected mainly by the 
water supply in the basin) and stormflow (the part affected 
by precipitation) has been studied for over a hundred years 
(Boussinesq 1904; Maillet 1905; Horton 1933); its use has 
not lost its importance even in recent studies (Xie et al. 
2020; Taormina et al. 2015). In forested catchments, base-
flow can be understood as runoff of surplus water that the 
forest stands (plant-soil system) did not physiologically use 
under standard hydroclimatic conditions (Filoso et al. 2017). 
Stormflow on the other refers to the fraction of runoff that 
leaves the catchment in a rapid manner without being able 
to be used by the trees. In forested headwater catchments 
under conditions when the runoff is predominated by base-
flow, streamflow is primarily influenced by the forest stand 
type and its predominating tree species (Kupec et al. 2018).

There are a number of methods of baseflow separation 
with different levels of complexity (Mohammadlou and 
Zeinivand 2019). Baseflow can also be measured by direct 
methods such as chemical and radioactive tracers (Chap-
man 1999). However, these methods are time-consuming, 
expensive, and complex. No matter what baseflow separa-
tion technique is used, the results are usually quite similar, 
and it is a widely used approach, even though there is lack 
of presentation of the physical processes (Lu et al. 2022). 
Here we used the local minimum method (Gregor 2010) as a 
fast and efficient way to quantitatively estimate the baseflow 
and to estimate the importance of groundwater influence in 
the experimental catchments (Wrede et al. 2015). The so-
called baseflow index (BFI) then indicates the proportion 
of baseflow to the total runoff. The value of this parameter 
is influenced by a number of factors — geological, morpho-
logical, climatic, vegetation, etc., and it is indicative of the 
baseflow proportion and its residence time (Hrachowitz et al. 
2014). In a situation where all the above-mentioned factors 
are very similar or identical, we assume that the nature of the 
vegetation cover of the catchment has the highest influence 
on this parameter (Ledesma et al. 2019).

The presented article uses the paired catchment experi-
ment design to compare the runoff response of three head-
water forested catchments with different predominant tree 
species in the forest stands in the uplands of Central Europe 
to hydroclimatic extreme events in a precipitation abundant 
year. It strives to showcase how current forest stands react 
to these extremes in a time when the extremity of weather is 
predicted to become the new normal.

2  Material and methods 

2.1  Experimental catchments 

The research area is in the uplands of the Czech Republic in 
South Moravian Region in the territory of the TFE (Fig. 1). 
There are three experimental micro-watersheds designed as 
paired catchments of relatively similar size, natural condi-
tions, shape, and morphology (Table 1) with different tree 
species composition: Kanice (KA) with a predominance of 
mixed spruce-beech stands, Křtiny (KR) with mainly spruce 
stands, and Útěchov (UT) with a predominance of beech 
stands (Table 2). The analysis of the current species compo-
sition was carried out by remote sensing using data from the 
Sentinel-2 satellite (Fernandez-Carrillo et al. 2020). All the 
forest stands are fully stocked with the exception of clear-
ings after harvest. Forest stand units older than 50 years are 
represented by 57%, 35%, and 56% in Kanice, Křtiny, and 
Útěchov, respectively (Lesprojekt Brno corp 2013).

All three catchments are located close to each other (less 
than 10 km) in the Brno massif, which is mainly made up of 
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granodiorites (Bajer 2015). They have similar morphologi-
cal characteristics (they are elongated spring valleys). The 
climate of the region is moderately warm (Quitt 2009); the 
differences in the micro-climate are determined by the relief 
and altitude. According to the long-term climatic standard 
1980–2010 (Czech Hydrometeorological Institute 2022) the 
mean annual temperature reaches 10.0 °C and precipitation 
511 mm (Brno, Tuřany; 49.153°N, 16.688°E); in 2020 the 
precipitation reached 642 mm. In 2020, the annual precipi-
tation totals measured at own field climate stations reached 
851 mm, 908 mm, and 878 mm for KA, KR, and UT, respec-
tively. The year 2020 significantly exceeded the average pre-
cipitation totals in all three catchments.

2.2  Methodology

Based on our own measured field climatic and streamflow 
data from the whole year 2020 in three forested micro-catch-
ments with different stand types (species composition), a 
comparative analysis of the parameters of the rainfall-runoff 
process was performed. This was done as a comparison of 
the hydrographs from individual catchments. Baseflow sepa-
ration was used to identify extreme runoff events (ERE), 
which were further analyzed. A set of precipitation and run-
off characteristics of EREs from individual catchments were 
compared against each other. Lastly, a correlation analysis 
using linear regression in EREs was carried out with the aim 

of finding if any of the precipitation characteristics could be 
used to determine resulting runoff characteristics.

2.2.1  Data acquisition

Streamflow was estimated from the water level values using 
preset rating curve for Thomson weir installed in the dis-
charge profiles of all three micro-catchments (Fig. 1). The 
water level was measured by ultrasonic sensors US3200 con-
nected to a HYDRO-LOGGER H2 datalogger (Fiedler Auto-
matic Monitoring Systems AMS, České Budějovice, CR) 
in 15-min intervals. Air temperature and precipitation were 
recorded in three climatic stations located inside or in the 
vicinity of the experimental watersheds (Fig. 1; MeteoUNI, 
Amet, Velké Bílovice, Czech Republic). The climatic sta-
tions were installed in forest clearings according to the meth-
odology of the International Co-operative Program (ICP) 
Forest manual (Raspe et al. 2010). The recording interval 
was set to 15 min similar to streamflow.

2.2.2  Data preparation

Streamflow, air temperature, and precipitation data were 
processed into a database of mean/total daily values for the 
whole year 2020. This database was cleaned of missing or 
erroneous data caused by battery failure in the water level 
sensor. Streamflow values were later converted to total daily 

Fig. 1  Localization of the 
micro-catchments within the 
Czech Republic
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runoff  (m3/day) from each catchment. This resulted in 347, 
366, and 356 days of streamflow data in KA, KR, and UT, 
respectively. In the next step, the separation of the hydro-
graph was carried out in order to identify the daily baseflow 
values. Baseflow separation was performed using the local 
minimum method (Gregor 2010) in the BFI + program (ver-
sion 3, build 7; www. hydro office. org). The local minimum 
method assumes that the baseflow varies linearly between 
minimum runoff values. These values occur in an interval of 
a specific number of days [0.5(2N* − 1)], where 2N* is the 
odd number closest to 2N (Sloto and Crouse 1996; Aksoy 
et al. 2009). The value of N can be determined from the 
empirical relationship (Institute of Hydrology 1980):

where A is the area of the catchment in  km2.
The N for the individual catchments was as follows:

In the case of all three catchments, the N value reached 
1, so BFI + would apply a local minimum of 0.5 N steps 

(1)N = 0.83A0.2

KA ∶ N = 0.83 × 0.65
0.2 = 0.83 × 0.917 = 0.76 ≐ 1

KR ∶ N = 0.83 × 0.57
0.2 = 0.83 × 0.893 = 0.74 ≐ 1

UT ∶ N = 0.83 × 0.38
0.2 = 0.83 × 0.824 = 0.683 ≐ 1

Table 1  Hydro-geomorphological parameters of the experimental catchments

Experimental catchment parameters KA KR UT

Afforestation (%) 98 100 100
Main tree species composition Mixed Norway spruce European beech
Main stream length (m) 640 770 660
Main stream elevation max (m a. s. l.) 330 490 371
Main stream elevation min (m a. s. l.) 287 455 333
Main stream gradient (%) 6.7% 4.5% 5.8%
All streams length (m) 970 770 815
Mean altitude (m) 330 510 388
Thalweg length (m) 1030 1090 980
Mean slope gradient (%) 17 21 38
Total basin area (ha) 65 57 38
Basin perimeter (m) 3630 3218 3052
Exposure North East South-east
Geologic subsoil, soil type Cambisole/granodiorite Cambisole/graywacke Cambisole/granodiorite
Average flow rate (L/s) 0.44 0.5 0.39
Average specific discharge (L/s/km2) 0.68 0.88 1.03
Mean annual temperature (°C)/precipitation (mm) 1990–2020 (Cor-

nes et al. 2018)
9.31/514 9.31/514 9.31/514

Mean annual temperature (°C)/precipitation (mm) 1980–2010 (CHMI 
2022)

8.9/559 8.9/559 8.9/559

6-h rainfall periodicity (mm, return time in 2/10/100 years) (Vizina 
et al. 2015)

29.3/49.1/81.2 30.2/51.6/89.3 29.3/49.1/81.2

Catchment shape analyses
  Shape factor (Bs) (Horton 1932) 1.63 2.08 2.53
  Elongation ratio (Re) (Schumm et al. 1956) 0.50 0.44 0.40

Elongated More elongated More elongated
  Compactness coefficient (Cc) (Gravelius 1914) 2.25 2.13 2.48
  Fitness ratio (Rf) (Melton 1957) 0.28 0.34 0.32

Table 2  Tree species 
composition (%)

Clearing European 
beech

Norway 
spruce

Common oak Scots pine European 
larch

Total

Kanice 4 44 25 6 15 6 100
Křtiny 1 39 56 1 3 - 100
Útěchov 5 52 3 34 5 1 100

http://www.hydrooffice.org
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forward and 0.5 N steps backward. Given that the analysis 
was performed on daily data, the closest whole number 
was used, which was 1 day forward and 1 day backward 
which effectively corresponds to N = 2.

Following the baseflow value, the so-called BFI index 
was also calculated as the ratio of baseflow to runoff (Yao 
et al. 2021) reaching values from 0 (when baseflow does 
not contribute to runoff and 100% of runoff is formed by 
stormflow) to 1 (when 100% of runoff is formed by base-
flow). In relation to forest cover, stormflow is interpreted 
here as unavailable water that rapidly leaves the catchment 
without being used by forest stands. As such the BFI index 

thus indirectly refers to the retention capacity of the catch-
ment and its water use efficiency (Kupec et al. 2018).

2.2.3  Extreme runoff episode identification

Episodes in which the daily runoff exceeded the 90th 
percentile (72.76  m3 in Kanice, 420.63  m3 in Křtiny, 
and 83.99  m3 in Útěchov) determined from the cleaned 
daily values in 2020 were graphically separated from the 
hydrographs of all catchments (Figs. 2, 3, and 4). The 
90th percentile of exceedance was used as a reasonable 
option to determine above-normal-extreme runoff cases 

Fig. 2  Daily runoff (full thick, 
black), its 90th percentile (full 
thin, black), baseflow (dotted, 
black), and precipitation (full, 
gray) in KA (mixed). The time 
and duration of the EREs (dot-
ted, gray) above the hydrograph

Fig. 3  Daily runoff (full thick, 
black), its 90th percentile (full 
thin, black), baseflow (dotted, 
black), and precipitation (full, 
gray) in KR (spruce). The time 
and duration of the EREs (dot-
ted, gray) above the hydrograph
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(Willems and Lloyd-Hughes 2016). When exceeded, the 
nearest corresponding intersection of baseflow and run-
off was considered as the beginning of the extreme runoff 
episode (ERE), i.e., when the BFI reached the value of 
1. The end of the period was then identified as the day in 
which the BFI reached the value of 1 again. For all EREs 
(a total of 31 episodes identified in the three catchments), 
detailed hydrographs including runoff and baseflow were 
processed. After a visual evaluation of these hydrographs, 
some were excluded from further evaluation for objective 
reasons (see below). Each ERE was then described by a set 
of the following precipitation and runoff characteristics:

• Precipitation total — the total amount of precipitation 
in mm for the duration of the episode

• Mean daily rainfall intensity — rainfall total/episode 
duration

• Maximum daily precipitation — the highest daily pre-
cipitation total in mm throughout the episode

• Duration of the episode — the lasting of the episode in 
days bounded by the days when the BFI index reached 
a value of 1

• Runoff — total runoff for the duration of the episode 
calculated from mean daily values in mm

• Baseflow — total baseflow for the duration of the epi-
sode calculated from mean daily values in mm

• Stormflow — this was calculated as a complement of 
baseflow to runoff in mm

• Average BFI — is referred to as flood control effi-
ciency; it was determined as the proportion of total 
baseflow to runoff of all days in the episode

• Minimum BFI — equals to the lowest BFI throughout 
all days in the episode

• Median BFI — this was calculated as the median value 
of BFI from all days in the episode.

The minimum BFI refers to the day on which the lowest 
BFI value was reached in any given ERE. The lower the min 
BFI, the more significant portion of runoff was composed of 
stormflow. In regard to the retention capacity of the catch-
ments, this parameter can be interpreted as a determinant of 
the absolute capacity of the catchment to mitigate extreme 
runoff (stormflow). Min BFI was thus further used as an 
indicator of so-called flood control efficiency (FCE in %).

2.2.4  Data evaluation

The relationship (degree of dependence) between individual 
precipitation and runoff parameters during ERE was evalu-
ated based on the strength of the linear regression correla-
tion according to the following equation:

where x are the values of the individual precipitation 
parameters (independent variable) and y of the runoff 
parameters (dependent variable). Correlation coefficients 
were used to evaluate which precipitation factors are most 
important for runoff generation during ERE. Correlation 

Correl(X;Y) =

∑
�

x − x
��

y − y
�

�

∑

x − y)
2 ∑

�

y − y
�2

Fig. 4  Daily runoff (full thick, 
black), its 90th percentile (full 
thin, black), baseflow (dotted, 
black), and precipitation (full, 
gray) in UT (beech). The time 
and duration of the EREs (dot-
ted, gray) above the hydrograph
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values greater than 0.8 were considered excellent correla-
tion and values less than 0.2 poor correlation (Akoglu 2018).

3  Results

3.1  Hydrological response of the catchments 
in the precipitation abundant year 2020

The hydrographs here (Figs. 2, 3, and 4) are a graphi-
cal representation of daily runoff  (m3), its 90th percen-
tile, daily precipitation totals, and baseflow  (m3) in the 
calendar year 2020 for individual basins. A total number 
of 31 EREs were identified during 2020: 8 in KR, 13 in 
KA, and 10 in UT. Despite significantly above-normal 
precipitation totals, the runoff coefficient remained at low 
values (Table 3). This indicated the tendency of the for-
est stands (plant-soil system) to restore water reserves in 
the system during wet conditions depleted in the previ-
ous period (antecedent drier years). The median BFI for 
all catchments was remarkably similar and reached above 
0.9, while the average BFI values were about 10–15% 
lower for all three of them. This indicated the importance 
of EREs on the overall formation of runoff during this 
year in all three catchments. However, the runoff from 
the spruce catchment KR was significantly higher than 
from the other ones with less spruce in the stands. Higher 
value of the 90th percentile in KR also indicated a signifi-
cantly more erratic runoff behavior in the spruce catch-
ment. This was indicated by lower mean BFI to median 
BFI in KR as well. Since the BFI in the spruce catchment 
was significantly lower than in the other two catchments, 
the share of unused water in the form of stormflow was 
also significantly higher there. This increases the amount 
of runoff but limits the ability of the stands to restore soil 
water reserves.

3.2  EREs — hydrological response of studied 
catchments during extreme runoff events

Due to the conclusive importance of EREs for contrib-
uting to the total annual runoff from the catchments in 
the precipitation abundant year 2020, the next step was 
to parameterize the rainfall-runoff process in individual 
EREs in more detail so that it was possible to quantify the 
extent of their influence on runoff generation, and in the 
context of the different tree species composition of the 
individual catchments. Detailed flood hydrographs includ-
ing stormflow above the baseflow lines were processed for 
the duration of all EREs (a total of 31 episodes). Some 
EREs, especially occurring in the winter, were excluded 
from further evaluation after a visual inspection because Ta
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they were being caused by sources other than precipitation 
— freezing of the stream which increased the registered 
water level because of the icy crust above water level, 
melting of snow which we could not correctly capture due 
to not heated rain gauge, etc. Overall, the main sources of 
error or high levels of uncertainty in the measured data 
came from either the stream freezing solid, the spillway 
getting clogged by debris, or battery failure (Deutscher 
et al. 2021). Four periods in KA and one period in UT 
(Supplementary) were removed from further evaluation 
for these reasons. In total, 26 EREs entered the next evalu-
ation, namely, 9 in KA, 8 in KR, and 9 in UT. The evalu-
ated EREs were analyzed based on a set of descriptive 
characteristics that evaluate both the characteristics of the 
precipitation that caused the increased runoff and the char-
acteristics of the resulting runoff (Supplementary).

During the EREs, total precipitation reached 387, 353, 
and 272 mm for KA, KR, and UT, respectively, which cor-
responds to 49, 39, and 36% of total annual precipitation in 
the catchments (Table 4). This underlines the importance 
of these periods for the overall annual water balance. This 
also means that over 35% of annual precipitation in 2020 in 
all catchments fell during extreme precipitation events. The 
average duration of EREs was 7 days in both KA and UT 
while the stormflow lasted 4 more days (11 days on aver-
age) in KR. This might be indicative of different behavior 
of the spruce catchment. The total daily runoff during EREs 
reached 9, 76, and 15 mm for KA, KR, and UT, respectively, 
accounting for 30.4, 58.8, and 31.5% of the total annual 
runoff from the catchments. Again, it is evident that during 
EREs, the KR spruce catchment behaves differently to the 
other two. What is more, in KR, almost 60% of the annual 
runoff occurred during extreme hydroclimatic events even 
though they had been caused only by 39% of annual precipi-
tation. This is approximately double the amount of runoff 
during EREs from the other catchments with predominantly 
deciduous and mixed tree species composition despite the 

relatively similar precipitation amounts. The importance of 
EREs for the formation of runoff (or the retention of the 
flood waves) in the spruce catchment was extremely rel-
evant. The flood control efficiency (FCE, min BFI reached) 
during EREs reached average values of 33, 23, and 52% with 
average precipitation of 38.7, 51.9, and 24.8 mm for KA, 
KR, and UT, respectively. During a more detailed analysis 
of the most extreme precipitation events, an indication of 
the limit of the basin’s retention capacity could be observed:

In KA, compared to the mean FCE 33%, low FCE was 
reached 2 times in a period of 118-mm total precipitation 
(FCE was 7%) and a period of 50 mm (17%);

In KR, compared to the mean FCE 23%, low FCE was 
reached in several EREs with total precipitation of 132 mm 
(3%), 52 mm (6%), and 74 mm (8%);

In UT, compared to the mean FCE 52%, FCE never went 
below 27%, which was reached twice in EREs with 92 and 
42 mm.

3.3  Comparison of catchment response in EREs 
— what was the determining precipitation 
parameter for the runoff behavior?

A significant difference in the hydrologic behavior of for-
ested micro-catchments with different tree species composi-
tion in a precipitation abundant year was found. The impor-
tance of EREs for runoff generation during these extreme 
hydroclimatic conditions was noted. The results of the fol-
lowing analysis were intended to find out whether there was 
a specific parameter of the precipitation events that generally 
determined the runoff response during EREs or if such a 
parameter was different in catchments with different tree 
species composition in the stands (Table 5).

There was no precipitation characteristic that could be 
universally deemed as significantly correlated to the pre-
sented runoff characteristics (Table 5). The overall most 
significant correlation characteristic across all catchments 

Table 4  Summary of the descriptive sets of precipitation and runoff characteristics during all EREs

For individual EREs see Supplementary

KA mixed KR spruce UT beech

Min Max Avg Tot Min Max Avg Tot Min Max Avg Tot

Duration of the ERE (days) 4 13 7.4 74 4 18 11.1 89 4 12 7.2 65
Precipitation (mm) 2.7 118.0 38.7 387 10.9 101.3 51.9 353 7.7 92.1 24.8 272
Mean precipitation daily intensity (mm) 0.5 9.1 5.0 50 3.1 8.7 5.1 41 1.3 10.2 3.5 35
Max daily precipitation (mm) 2.7 38.1 20.7 207 5.4 46.6 24.0 199 5.6 24.8 13.2 119
Runoff (mm) 0.5 2.0 0.9 9 4.1 17.8 9.5 76 0.9 3.1 1.7 15
Baseflow (mm) 0.3 0.7 0.5 5 1.4 6.8 3.6 29 0.7 1.9 1.1 10
Stormflow (mm) 0.1 1.4 0.3 4 0.5 14.2 5.0 48 0.0 1.5 0.5 5
FCE (%) 7 45 33 3 79 23 27 91 52
Mean BFI (%) 59 81 74 46 92 61 56 98 78
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was found in total precipitation. Although it did exhibit 
very different values across the catchments reach on aver-
age 0.71, 0.34, and 0.50 in KA, KR, and UT, respectively. 
In the case of the mixed catchment KA, duration of EREs 
was also supplemented by total precipitation (0.7). Overall, 
the KR spruce catchment indicated the lowest correlation of 
precipitation to runoff characteristics.

In more detail, the results showed the following:
In KA (mixed), the runoff characteristics during EREs 

were most influenced by the precipitation total (three corre-
lation coefficients exceed the limit of significant correlation 
0.8; the average degree of correlation reached 0.71 for pre-
cipitation). The intensity of precipitation and the maximum 
daily total were not significant (on average 0.24 and 0.37). 
FCE was the most dependent on total precipitation (0.79) 
and the least on mean precipitation intensity (0.23).

In KR (spruce), none of the precipitation characteristics 
of EREs did strongly affect the runoff characteristics (no 
parameter reached over 0.55) even though total precipitation 
was the strongest correlated parameter. The other precipita-
tion characteristics showed even weaker correlation (0.20 
and 0.24). FCE was the most dependent on precipitation 
(0.47).

In UT (beech), runoff characteristics during EREs were 
most influenced by maximum daily precipitation (0.55 on 
average) and total precipitation (0.50). Mean precipitation 
intensity was not so significant (0.39). FCE was the most 
dependent on maximum daily precipitation (0.61).

4  Discussion 

A total of 26 EREs (with an average duration of 7–11 days) 
were evaluated in three headwater forested catchments in 
2020. Their share of the total runoff ranged from 30.4% in 

the KA mixed catchment to 58.8% in the KR spruce catch-
ment which we consider to be very significant, both for the 
importance of hydroclimatic extremes on total streamflow, 
runoff, and annual water balance but also as an indicator of 
distinctly different hydrological behavior of catchments with 
different forest stand types.

This difference was further accentuated during extreme 
runoff events (EREs) following extreme precipitation. It 
could be observed in the different volume and dynamics of 
runoff characteristics. We derive these differences mainly 
from (i) the generally different ecohydrological properties 
of the different predominant tree species (evergreen vs. 
deciduous) that make up the forest stands of the described 
catchments (Švihla et al. 2012; Ledesma et al. 2019; Kupec 
et al. 2021) and (ii) the influence of climate change on these 
stands, especially in the KR spruce catchment (Švihla et al. 
2014; Deutscher et al. 2016; Rötzer et al. 2017). The results 
of our study show that while the mixed catchment KA and 
the beech catchment UT managed to continue to exhibit 
relatively high levels of FCE even under extreme hydrocli-
matic conditions, the spruce catchment KR overreacted to 
these circumstances by an immediate and radical increase 
in stormflow runoff.

Analysis of BFI was used to identify the different behavior 
of the three catchments under hydroclimatic extreme con-
ditions. Baseflow volumes and the BFI index can be both 
usually strongly correlated with the relief and gradient of 
the catchment (Santhi et al. 2008). To mitigate the poten-
tial mixing signal of the terrain configuration, the paired 
catchment experiment was used and extensive analysis of 
the shape and other relevant hydro-geomorphological param-
eters of the three catchments were performed (Table 1). The 
comparison is complex. However, it can be concluded that all 
three catchments are quite similar with regards to location, 
size, and the hydrographic network. The gradient and shape 

Table 5  Results of the linear regression between the independent precipitation (in the first column) and the dependent runoff characteristics dur-
ing EREs

Note: Significant correlation (0.8 and above) is highlighted in bold. Weaker but still possibly relevant correlation 0.70–0.79 is presented in bold 
italics

Precipitation characteristics Runoff Baseflow Stormflow Flood control effi-
ciency FCE (Min 
BFI)

Mean BFI Overall mean correlation of 
presented characteristics

KA (mixed) Precipitation total 0.85 0.13 0.95 0.79 0.83 0.71
Mean precipitation daily intensity 0.14 0.13 0.32 0.23 0.40 0.24
Max daily precipitation 0.23 0.05 0.41 0.59 0.59 0.37

KR (spruce) Precipitation total 0.02 0.52 0.18 0.47 0.51 0.34
Mean precipitation daily intensity 0.23 0.55 0.04 0.11 0.07 0.20
Max daily precipitation 0.00 0.43 0.09 0.38 0.31 0.24

UT (beech) Precipitation total 0.70 0.60 0.54 0.42 0.26 0.50
Mean precipitation daily intensity 0.56 0.66 0.33 0.28 0.10 0.39
Max daily precipitation 0.62 0.28 0.71 0.61 0.55 0.55
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analysis showed that UT (beech) is steeper and prone to faster 
runoff response as compared to the other two KA (mixed) 
and KR (spruce). Notably KR is in the highest altitude (510) 
as compared to KA (330) and UT (388 m a. s. l.) which 
was manifested by slightly higher total precipitation. How-
ever, the steeper slopes of UT and resulting expected higher 
volumes of runoff from this catchment were not supported 
by our data. It seems that in the described conditions, the 
dynamics of BFI were mostly driven by and can mainly be 
attributed to the tree species composition in the forest stands.

Even though baseflow separation techniques usually offer 
similar results (Lu et al. 2022), we tried to mitigate the limits 
of the baseflow calculation method used (local minima) by 
calculating average BFI on studied catchments using another 
four methods: fixed interval (Sloto and Crouse 1996), sliding 
interval (Sloto and Crouse 1996), BFLOW (Lyne and Hol-
lick 1979), and EWMA filter (Tularam and Ilahee 2007). 
Even though they offer slightly varying results (Table 6), 
the calculations still indicate a distinctly different behavior 
of the spruce Křtiny catchment compared to the other two. 
Regardless of the technique used, rather similar behavior of 
the Kanice and Útěchov can be observed which is consistent 
with the way we interpret the results.

We therefore assume that the difference in the dynam-
ics of the immediate catchment response to extreme pre-
cipitation events is primarily affected by the present stand 
type, i.e., its tree species composition (Bosch and Hewlett 
1982; Kantor 1995; Kantor et al. 2003). Our team previ-
ously demonstrated that the catchment water use efficiency 
(cWUE) for spruce stands in the temperate uplands is lower 
compared to catchments with deciduous and mixed stands 
in dry (precipitation-free periods) (Kupec and Deutscher 
2017). Here we now show that this is also true in case of the 
other extreme — above-normal precipitation. This comes as 
a surprising effect since spruce stands are usually associated 
with high flood control potential better than beech in the 
same areas (Hümann et al. 2011) also even at the headwa-
ter small catchment scale (Wahren et al. 2012). However, 
hints of this have been mentioned before with regards to 
the expected shift of tree species composition in the region 
to better combat drought (Lange et al. 2013). It seems that 
evergreen forests have a higher water use efficiency than 
deciduous forests (Zhang et al. 2023). As far as we know 
there are very few studies concerned about the difference of 
flood control efficiency between coniferous/broad leaved tree 
species, though many studies focus on water use efficiency, 

interception, evapotranspiration, throughfall, stemflow, 
groundwater recharge, and other water balance components 
(Komatsu et al. 2007, 2008). Some indicate the evergreen 
forest stands rather reduce water discharge than deciduous 
ones (Augusto et al. 2002) or evergreen rather reduce flood 
occurence and intensity (Swank and Vose 1994).

This indicates that the cWUE of spruce stands in this region 
is overall lower regardless of the amount of available water. 
During dry periods, the reduced cWUE was mainly attributed 
to the transpiration processes of the forest stands which lead 
to decreasing streamflow and the inability to sustain balanced 
flows (Kupec et al. 2018). In extreme precipitation events, it 
seems that the reasons for the lower cWUE in spruce stands 
are caused by the already disrupted soil–plant system as a result 
of long-term stress induced by the effects of climate change 
(Zahradník and Zahradníková. 2019; Fernandez-Carrillo et al. 
2020; Senf et al. 2020). The lower cWUE was manifested as 
limited FCE, higher ratio of stormflow, and lower BFI, i.e., a 
reduced retention capacity of the watershed. This all leads to 
a reduced ability of the spruce stands for soil water recharge 
which further increases their drought stress (Juřička et al. 2022). 
This is also indicated by the fact that in EREs in spruce, there 
was no strong correlation between precipitation and runoff 
characteristics (Table 5). The quantity of the precipitated water 
seemed to have less of an impact on runoff response (no cor-
relation above 0.34 was found) as if the retention capacity of 
the catchment was always filled or the infiltration simply could 
not occur (Du et al. 2019). In the other studied catchments with 
less spruce, parameters describing the amounts of precipitated 
water in EREs were more strongly correlated to runoff response 
(reaching around 0.5 in UT and up to 0.71 in KA). However, it 
should be noted that the above applies to EREs with a duration 
of approximately 7–11 days; no longer ERE was observed in 
the studied year 2020. It is possible that these dynamics might 
change in longer extreme hydroclimatic periods.

Our results also suggest that there is an imaginary thresh-
old in each of the catchments manifested in the way that 
once the retention capacity of the catchment is reached and 
filled, the runoff then drains from the catchment in a rapid 
manner in the form of disproportionally large ratio of storm-
flow. Defining such a threshold is clearly very complex as 
it is affected by a few agents. In addition to precipitation 
properties (total and intensity) and the vegetation cover, 
catchment morphological properties also play a role in its 
determination (Tromp-Van Meerveld and McDonnell 2006) 
as well as the geological substratum and soil properties.

Table 6  Average annual BFI 
compared with various methods

Local minima Fixed interval Sliding interval BFLOW EWMA Average

Kanice 0.85 0.87 0.82 0.81 0.80 0.83
Křtiny 0.75 0.74 0.72 0.61 0.58 0.68
Útěchov 0.83 0.91 0.84 0.79 0.80 0.83
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The fraction of soil particles can also be a significant vari-
able determining the course of BFI (Bloomfield et al. 2009). 
In the case of underlying geology of igneous and consolidated 
sedimentary rocks (granodiorites in our case), soil porosity 
and depth play a more significant role in the drainage char-
acteristics of the catchment rather than a simple difference in 
the age of the underlying geology (Lacey and Grayson 1998). 
The soils and parental bedrock in all three catchments are quite 
similar (Table 1) as they are located close to each other in the 
same geological formation of the Brno massif. Therefore, the 
observed differences should be attributed to something else. 
For shallow rooting trees (such as spruce), the pedological 
conditions and their heterogeneity in the catchment could also 
be a significant variable in the runoff regime (Juřička et al. 
2022). This could be one of the reasons why the response of 
the KR spruce catchment was so different to the other two 
since the present broadleaved trees such as beech generally 
develop a deeper rooting system. Complex as it is, it can be 
stated that at the catchment scale, especially in fully forested 
basins, the forest vegetation was the premium determinant of 
runoff conditions (Bosch and Hewlett 1982). In principle, for-
est vegetation also determines the underlying soil properties, 
or functioning of the plant-soil system, especially in the short 
and medium term (Jentschke et al. 2001; Fahey et al. 2005; 
Pichler et al. 2009) relevant for hydroclimatic extremes. For 
these reasons, when searching for the above-mentioned thresh-
old of disproportionally high stormflow and resulting rapid 
runoff from the catchments in the short- and medium-term 
periods (7–11 days) of EREs, we placed primary focus on the 
characteristics of precipitation and runoff response rather than 
on the defined relatively independent natural conditions of the 
experimental forest catchments. While we did not manage to 
clearly identify the threshold as it is very complex and more 
research (and broader datasets) is needed in this manner, we 
managed to find some hints. Most notably, in KA (mixed) the 
retention capacity of the catchment and its forest stands was 
filled when precipitation exceeded 50 mm, when FCE dropped 
below 17%. In other cases, the catchment exhibited FCE of 
around 33%. In KR (spruce), this retention capacity seemed 
to be filled already after precipitation above 30 mm, when 
FCE dropped below 8%. In other cases, the catchment exhib-
ited FCE of 23%. In UT (beech), despite the morphologically 
highest susceptibility to peak flows (Table 1), FCE remained 
relatively high 27% even in the one event with 90 mm of pre-
cipitation. In other cases, the exhibited FCE reached around 
52%.

5  Conclusions

We performed a comparative paired catchment study of 
three headwater upland forest micro-catchments with 
different forest types in the precipitation-abundant year 

2020. Our team demonstrated that in case of hydroclimatic 
extremes, there are significant differences in the runoff 
response from these catchments, depending especially on 
the tree species composition in the forest stands.

As a result of the impacts of global climate change, 
the study site has been affected by a previous several-year 
dry period. In these conditions, an unexpectedly above-
normal precipitation abundant year 2020 came. Here, we 
have shown that mixed and beech predominated micro-
catchments exhibited relatively low runoff coefficients of 
3.8% and 6.5%, respectively, while the catchment predomi-
nated by spruce responded by a much higher runoff coef-
ficient of 14.2%. In the precipitation-abundant year such 
as 2020, this is indicative of high flood control efficiency 
of the mixed and beech catchments and a rather low in the 
case of spruce. This is a surprising fact that might be opti-
mistic with the expected shift in tree species composition 
in the region focused more on beech stands as opposed to 
spruce. It also refers to the potential to recharge water stor-
age during periods of high flows which seems to be much 
smaller in the case of spruce as compared to the other two 
forest stand types.

Extreme runoff events (EREs) were identified through-
out the year and the response of individual micro-catch-
ments was analyzed using baseflow separation. It turned 
out that these periods were hydrologically very significant 
as 49, 39, and 36% of the annual precipitation totals fell 
during them and they were responsible for 30.4, 58.8, and 
31.5% of annual runoffs of the mixed, spruce, and beech 
catchments, respectively. Even here, the spruce catchment 
responded differently to the relatively similar hydrological 
behavior of the mixed and deciduous catchments, when 
almost twice as much of annual runoff occurred during 
EREs in the spruce catchment. This suggests that the 
spruce catchment is more prone to suffer from drought 
since twice as much water was lost from the system during 
extreme hydroclimatic events as opposed to the other two 
and less water is thus available for groundwater recharge.

A parameter of flood control efficiency FCE was intro-
duced in Section 2.2 equivalent to the lowest daily BFI value 
in any ERE as means of interpreting the potential for flood 
water retention and slowing the stormflow runoff of the indi-
vidual catchments. Here too, it was shown that the FCE was 
significantly lower in the spruce catchment (3–79% on aver-
age, 23% for all episodes), almost by half than in the case 
of the beech (27–91% on average 52%) catchment and by a 
third in the case of the mixed one (7–45% on average 33%).
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