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Abstract 

Physically modelling the mechanical response of a tree by numerical simulation depends on having accurate data 
on the mechanical properties of green hardwood. Lacking such data, we developed and validated an orthotropic 
elasto-plastic (E–P) material model, based on the results of experiments performed on European beech (Fagus 
sylvatica L.) green wood, capable of including both the non-linearity and orthotropic properties of the material. We 
selected 655 clear samples with the special orthotropic structure of annual rings. All samples were prepared imme-
diately after felling; their moisture content (MC) was 80% on average. The mechanical responses in normal directions 
and shear are represented by bi-linear stress–strain curves. The E–P model was validated by comparing the force–
deflection response of three-point bending of green wood samples in a finite-element method (FEM) simulation 
(the average relative error was 4.6% for point-wise and 1.7% for integral-wise comparison). The output of this work 
was a consistent set of material constants for the E–P material model that is now available for the structural analysis 
of beech wood with MC above to fibre saturation point (FSP), especially green wood, subjected to relatively high 
loads (such that a plastic deformation appears) and that can very well predict a non-linear response above the pro-
portional limits.

Keywords Wood mechanical properties, Tree biomechanics, orthotropic material, Non-linear material, FE model, 
Green wood

Introduction
The mechanical properties of wood are one of the key 
parameters in the mechanical analysis of natural wood 
structures such as trees [1]. The moisture content (MC) 
of wood in standing trees exceeds the fibre saturation 
point (FSP), affecting its mechanical properties com-
pared to construction wood [2]. The mechanical prop-
erties of wood do not change dramatically above the 
FSP limit; however, for consistency, green wood prop-
erties should be measured above 50% MC [3]. Various 

device-supported methods, like the pulling test [4], uti-
lise green wood’s mechanical properties to assess tree 
stability. These include assessing force and longitudinal 
strain using mechanical sensors [5] or optical techniques 
like digital image correlation (DIC) [6]. Results of this 
tests are afterwards compared to catalogued green wood 
properties [7, 8], detecting changes due to defects or root 
damages.

In recent years, numerical models based on the finite-
element method (FEM) have been established as a reli-
able instrument to predict the mechanical behaviour of 
trees. Jackson et al. [9] combine terrestrial laser scanning 
data and FEM to predict strain on the trunks of differ-
ent trees and validate the model using strain data meas-
ured on the scanned trees. Vojackova et al. [10] present 
an FEM simulation of tree response to static loading and 
the interaction between stem and root-plate stiffness, 
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which they validate by comparison with field-measured 
data. Middleton et al. [11] use different mechanical finite-
element (FE) models of tree forks to replicate rotations in 
the joints and validate them by bending mechanical test-
ing of different Salix alba inosculations.

Material parameters for the structural analysis of trees 
are usually taken from mechanical tests of compression/
tension parallel to the grain or from bending tests [12, 
13]. Wessolly and Erb [8] describe an approach to assess-
ing tree stability by the pulling test method, where the 
longitudinal elastic modulus (E) in compression and the 
yield point (σ) in compression parallel to the grain are 
used to characterise the material. Lundström et  al. [12, 
14] provide the material properties of living stems to pre-
dict the E and present an idealised stress–strain diagram. 
Niklas and Spatz [3] analyse the relationships among 
the elastic parameters of green wood from a taxonomi-
cally broad range of 161 species. Nevertheless, the bio-
logical nature of wood and its anisotropic structure make 
wood a material arduous to model [15, 16]. The mechani-
cal behaviour of wood shows non-linear deformation in 
compression, mainly due to the collapsing of cells and 
the separation of fibres. In tensile loading and shear, the 
stress–strain behaviour is more linear with brittle failure 
[17]. In simulating the mechanical response of wood-
based composites through the generalised Hill’s poten-
tial theory, Moses and Prion [17] introduce an artificial 
requirement: the equality of tensile σ and compressive σ 
to maintain model consistency. Furthermore, the σ is set 
artificially high and, however, this approach assumes a 
symmetrical response of wood to mechanical load which 
is not generally found, especially with high loads. Plastic 
behaviour above the σ is important for a reliable descrip-
tion of strain development in wooden structures [18] 
including trees.

The development of numerical methods allows more 
realistic models of wood and wood-based materials and 
structures to be used [19, 20]. Mackerle [21] published 
a comprehensive review of the general use of numeri-
cal models in wood analysis. The first general model of 
anisotropic plasticity was introduced by Hill [22]. For 
the E-P modelling of mechanical response, 27 bi-linear 
material parameters and three Poisson’s ratios are needed 
[19, 23, 24]. The response of models is most often com-
pared with the response in an experimental bending test, 
as this test combines tension, compression and shear, 
and bending is a very common mode of real loading in 
practice [25]. Clouston and Lam [26] use a continuum 
mechanics approach to simulate the mechanical proper-
ties of wood strand composites by the implementation 
of an orthotropic E–P failure model. Moses and Prion 
[27] apply plasticity and the Weibull weakest link failure 
model to predict the properties of wood and wood-based 

composites to reach non-linear plastic behaviour in each 
of the orthogonal material directions. Yoshihara [28] 
proposes equations based on the beam theory to obtain 
critical stress intensity factors and assess the influence 
of the elastic properties of a double cantilever beam and 
three-point end-notched flexure. Wood compressive 
behaviour using the bi-linear material in fibre-reinforced 
glulam beams is modelled by Fiorelli and Dias [29]. Oud-
jene and Khelifa [18] present a constitutive three-dimen-
sional (3D) anisotropic plastic model for dried wood 
and use 3D FEM to describe the non-linear compressive 
pattern of wood. Hering et  al. [30] show the moisture-
dependent stress–strain relationship of European beech 
wood under compression and describe the significant 
influence of MC on stress–strain behaviour for elastic 
and plastic domains. Hong et  al. [31] describe a simpli-
fied non-linear orthotropic model of wood by reduc-
ing the number of parameters from 27 (for the general 
orthotropic bi-linear model) to six, with the experimental 
validation in compression [19], where Et is defined as a 
fixed small fraction (0.001) of the E. Using an E–P model, 
Milch et  al. [23] describe the mechanical properties of 
dried wood by experimental and numerical methods by 
doing compression tests parallel and perpendicular to the 
grain in different directions, a three-point bending test 
and double shear joints with FEM. Šebek et  al. [32] use 
an orthotropic non-linear model of beech wood based on 
split Hopkinson pressure and tensile bar experiments to 
reflect the anisotropic behaviour for tensile/compressive 
asymmetry. Tippner et  al. [24] describe an orthotropic 
E–P model for oak wood at two different MC levels appli-
cable for FEM. Although the E–P behaviour of wood has 
been investigated in the past, bi-linear numerical models 
of green wood are still lacking. The objective of this study 
is to determine the E–P material properties of a repre-
sentative hardwood—the European beech (Fagus syl-
vatica L.), which is one of the most commonly occurring 
species in European forestry and arboriculture. In addi-
tion, a new numerical method is presented to identify the 
elastic and plastic zones of strain–stress curves. The sets 
of material constants are used in an FE model which is 
compared with the results of experimental tests in bend-
ing. This process produces a consistent set of material 
constants for an E–P material model that is available 
for the structural analysis of green beech wood where 
the wood is subjected to large deformations and plastic 
deformation takes place.

Materials and methods
A bi-linear orthotropic material model was used to sim-
ulate the E–P behaviour of green beech wood. The con-
stitutive relation of the material loading and material 
response used a continuous curve consisting of two linear 
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parts, whose slopes are referred to as E and the tangential 
modulus (Et); the point where the two linear parts meet 
is referred to as σ. Thus, three material constants (E, Et 
and σ; G, Gt and σ for shear, respectively) were used for 
each of the nine types of loading (normal tension and 
normal compression in three directions: longitudinal—
L, radial—R and tangential—T; and shear in three planes: 
longitudinal-radial—LR, longitudinal-tangential—LT and 
radial-tangential—RT), giving a total of 27 constants for 
an orthotropic material.

Anisotropic material model in ANSYS mechanical APDL
The ANSYS® Mechanical APDL FEM solver, release 
19.2 (ANSYS Inc., USA) was used for the computation 
as a robust and widely accepted FEM tool. The ANSYS 
ANISO material model can handle both the anisotropy 
and the non-symmetric non-linearity of the material. 
However, this material model is based on the general-
ised Hill’s potential theory in ANSYS® and suffers from 
the strict requirements of this theory. More precisely, the 
E in tension and compression are supposed to be equal 
and the σ in tension and compression are required to sat-
isfy the consistency equation Eq. (1.1) and the condition 
Eq. (1.2) on the M-tensor (see below) through the whole 
duration of loading.

The consistency condition (see ANSYS-help [33]) 
requires

where σ+i and σ−i are yields in tension and compression 
(where i is one of L, R or T), respectively.

The condition on the M-tensor relates diagonal com-
ponents of the tensor M =

(

Mij

)

 defined by the relations:

for a constant K  and reads as

(see ANSYS-help [33] for more details).

Hill’s theory for anisotropic material with one dominant 
direction
Conditions (1.1) and (1.2) present a kind of artificial 
restrictions which must be met during the FEM simula-
tion. A closer investigation reveals that even though the 
conditions from Hill’s theory are symmetric, the condi-
tion (1.1) is highly sensitive to the properties in R and T 
directions and (1.2) is highly fragile. We briefly describe 
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the restrictions coming from these conditions and how to 
overcome them.

Equation (1.1) can be rewritten in the form

Thus, the harmonic mean of yield moduli in tension 
equals that in compression. However, the harmonic mean 
is less intuitive than arithmetic or geometric means. 
Large changes in dominant values have minimal impact, 
while small changes in lesser values are substantial. This 
reflects behaviour of solid wood, where mechanical prop-
erties in L directions are dominant to those in the R and 
T directions. Condition (1.1) is sensitive to the mechani-
cal properties in R and T direction and less sensitive to L 
direction.

The left-hand side of inequality Eq.  (1.2) is a bi-linear 
form with matrix:

This matrix describes a cone in a three-dimensional 
space and (1.2) claims that the point (M11,M22,M33) is 
inside this cone. The material properties of wood imply 
that this point is always near the boundary of the cone. 
Really, the anisotropy of wood implies that the yields 
product σ−Lσ+L is much higher than the yield products 
σ+Rσ−R and σ+Tσ−T . Thus, M11 is small compared with 
M22 and M33 . Consequently, the point (M11,M22,M33) is 
close to the plane X = 0 which is a tangent plane to the 
cone defined by matrix A . This reveals that the M-ten-
sor condition Eq. (1.2) is not robust against perturbations 
of the quantities Mii , i ∈ {1, 2, 3} , since a small change in 
these quantities may shift the point outside the cone pre-
scribed by the condition (1.2).

To overcome the difficulties from Hill’s theory, σ values 
which satisfy both Eqs. (1.1) and (1.2) were used and the 
Et was redefined to be close to zero (following Hong et al. 
[19]). This ensured that Eqs. (1.1) and (1.2) remained 
valid after loading and kept more realistic values for all 
σ (equal in compression/tension, in correspondence with 
Moses and Prion [17]).

The consistent and validated E–P material model was 
developed in three main steps. The first step was to iden-
tify the mechanical properties of green wood for each 
loading mode independently. Subsequently, the constants 
for the E–P material model were established. The output 
from this step was 27 constants referred to as a bi-linear 
material model (B-MM). In the second step, the data 
from all normal loading modes were processed simulta-
neously and adjusted to the Hill’s theory and conditions 
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Eqs. (1.1) and (1.2). The output of this step is referred to 
as a computational material model (C-MM). Finally, a 
FEM simulation of three-point bending was compared 
with the experimental data. This step produced informa-
tion for fine-tuning the constants in the computational 
material model. Using these constants, we improved an 
agreement between the FE model and the experiment 
in three-point bending. The output of the last step is 
referred to as an adjusted computational material model 
(AC-MM).

Timber selection and sample crafting
Four European beech trees were chosen from a natural 
beech forest stand (GPS 49.2753611 N, 16.7176978 E; 485 

msl) in the university enterprise Masaryk Forest in Křtiny 
(Brno, CZ) and felled. The trees’ average height was 32 m, 
the breast height diameter was 45 cm and the age of the 
trees was 95 years.

One-metre-long logs were taken from a height of 
approximately 10 m on each trunk to make the samples. 
Due to the visual assessment and the high of trees, the 
part of the log was chosen as a representative source of 
material without defect (decay, cracks, wood structure 
deviation) with a common range of density represent-
ing the beech wood. The timber was processed within 
4 days after felling, one log per day. For mechanical test-
ing, ten types of the specially orthotropic samples (Fig. 1) 
were crafted. To keep the MC as close as possible to the 

Fig. 1 Schemes and dimensions (mm) of testing samples. Samples for A compression tests (1), (3) parallel to the grain (2), (4) perpendicular 
to the grain; B shear tests (1), (2) parallel to the grain; C tension tests perpendicular to the grain; D three-point bending test; E tension tests parallel 
to the grain. For brevity, the loading is omitted in pictures A3, A4, B2 and C2 and the dimensions are omitted in A1, A2, B1 and C1. In these cases, 
the values are identical in all corresponding tests (adapted from Tippner et al. [24])
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original MC in standing trees, the test samples were 
crafted immediately after log processing; the MC did not 
fall below 50% during crafting. This was achieved by stor-
ing all samples over water in sealed boxes to ensure the 
high relative humidity of the air within (99%).

Mechanical testing
The wood samples were tested in compression and ten-
sion parallel and perpendicular to the grain in the R 
and T directions; in shear at the LT and LR planes, and 
by three-point bending in the T direction—the notation 
accords with Hearmon [34], as presented in Tippner et al. 
[24].

The experimental setup (i.e. the dimensions of the sam-
ples and the course of the tests) was adopted from the 
British standard BS 373 [35] and the Czech standards for 
compression [36–38], shear [39] and tension [40, 41]. A 
three-point bending experiment described in standard 
ČSN 49 0115 [42] was used for model validation. The 
dimensions of the samples and directions of load are 
described in Fig. 1.

All samples were destructively tested on a Zwick Z050/
TH 3A universal testing machine (Zwick Roell AG, Ulm, 
Germany) equipped with a 50 kN load cell (Fig. 2). The 
experimental procedures were controlled using TestX-
pert v.11.02 (Zwick Roell AG, Ulm, Germany). The tem-
perature was kept within a range of 20–22 °C during all 
mechanical tests. To avoid MC losses, all samples were 
processed immediately after removal from the sealed 
boxes.

The surface of each sample was covered with a black 
sprayed speckle pattern and the displacement was meas-
ured using DIC for all measurements except tension par-
allel to the grain. A pair of AVT Stingray Copper F-504 
CCD cameras (Allied Vision, Stadtroda, Germany) with 

a cell size of 3.45 μm and resolution of 2452 × 2056 pix-
els, equipped with Pentax C2514-M lenses (Pentax Pre-
cision Co., Ltd., Tokyo, Japan) was used to record the 
experiment (Fig.  2). The captured images were further 
evaluated in Mercury DIC software (Sobriety Ltd., Brno, 
Czech Republic), in which the relative displacement of 
virtual tracked points on the samples was monitored. The 
location of the virtual point marker was set in the central 
part of the samples according to Brabec et al. [43].

The displacement during tests in tension parallel to the 
grain was measured using “clip-on” mechanical exten-
someters (Zwick Roell AG, Ulm, Germany) (Fig.  1E). 
Data obtained from the universal testing machine and 
DIC were synchronised in the MATLAB 2022b (Math-
Works, Inc., Portola Valley, California, USA) environ-
ment. The shear characteristics in the RT plane were not 
tested experimentally and were obtained from Eqs. (2.1) 
and (2.2).

The dimensions and weight of the samples were meas-
ured before performing mechanical tests. The dimen-
sions and weights of the compression and bending 
samples were used to determine MC and density (these 
samples were selected for their simple geometry, which 
allowed reliable volume measurement). MC was assessed 
by the gravimetric method according to Czech standard 
[44].

In total, 655 samples were tested. Due to the careful 
selection of defect-clear and specially orthotropic sam-
ples, the number of samples was not the same in each 
group as shown in Table 1.

Establishing constants for the B‑MM
The parameters for the B-MM (σ, E, Et, G and Gt) were 
identified from the experimental stress–strain curves. 
Each curve from the strain–stress diagrams obtained 
in the experiments was fitted by a bi-linear function 
(piece-wise linear function consisting of two linear 

Fig. 2 Setup for experimental mechanical testing. Universal testing 
machine with DIC set of stereo cameras and lights

Table 1 Numbers of tested samples from the wood of Trees 1–4. 
The groups of samples are described in Fig. 1

Samples Tree 1 Tree 2 Tree 3 Tree 4

A 1) 3) 54 48 35 30

A 2) 28 – – –

A 4) 27 – – –

B 1) 18 19 18 37

B 2) 18 21 16 30

C 1) 17 16 15 16

C 2) 16 18 15 31

D 16 12 16 19

E 1) 17 10 10 12

Total 211 144 125 175
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parts) in MATLAB R2020b using the lsqcurvefit func-
tion, which allows a user-defined non-linear function 
to be fitted to the experimental data. This produced the 
optimal bi-linear fit for each normal loading mode (L, R 
and T) in tension and compression and for shear in two 
planes (LR and LT). The mechanical parameters from 
the normal load were additionally marked with “ + ” for 
tension and “–” for compression. Figure 3 shows sam-
ple data with average bi-linear function in experimental 
stress–strain diagrams.

The G and σ for the shear RT plane (σRT) were not 
experimentally obtained. Two equations were used 
from Bachtiar et  al. [45] for the calculation of these 
parameters.

The GRT was calculated by Eq. (2.1):

where K  is an empirically determined constant to adjust 
the amplitude of the sinusoidal function for the RT plane 
( K = 0.2 ), E−R and E−T are moduli of elasticity in com-
pression and µR and µT are the Poisson’s ratios.

The σRT  was calculated by

(2.1)GRT =
(K−1)(E−R+E−T)
2(K−1)(µR+µT)−4

,

where σ−R and σ−T are yields in compression.
To assess sample deformation optically, virtual track-

ers were placed both parallel and perpendicular to the 
load direction. This approach provided both active (com-
pressive) and passive (tensile) strains at the centre of the 
sample during compression tests in the elastic region. 
Poisson’s ratios were calculated from these strains using 
Eq. (3):

where μ represents the Poisson’s ratio in the XY plane, 
εi is the strain parallel to the loading direction (active), 
while εj refers to the strain perpendicular to the loading 
direction (passive).

In accordance with the notation of direction in Hear-
mon [34], LR, LT and RT were considered the major 
Poisson’s ratios. Since it was not possible to establish the 
exact deformations of the sample surface of the compres-
sion samples for Trees 2–4, only Poisson’s ratios obtained 
from Tree 1 were used further.

(2.2)σRT = 16

(K−1)2(σ−R+σ−T)
2 −

1

σ 2
−R

− 1

σ 2
−T

,

(3)µi,j = −εj/εi

Fig. 3 Stress–strain curves merged into a single common diagram. Experimental curves are in grey. The B-MM has been fitted through every single 
curve and the final B-MM is determined as an average model among the curves considered
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Modification of constants for C‑MM
The 27 constants describing the B-MM could not be 
used directly in a FEM solver, since the restrictions of the 
generalised Hill’s theory had to be met. They had to be 
modified artificially to fulfil the conditions of Eqs. (1.1) 
and (1.2). The generalised Hill’s theory does not distin-
guish between the E in tension and compression either 
and this reduces the number of material constants in the 
model to 24. The stability and robustness of the computa-
tions require setting the Et in tension, compression and 
Gt close to zero. This simplifies the definition of these 
nine constants and reduces the number of constants to 
15. More precisely, there remain six shear constants (G 
and σ in each of the three planes) and nine constants 
related to tension and compression (for each direction, 
we have a σ in tension, σ in compression and the E in ten-
sion and compression). Only nine of these constants are 
independent (all E, G and three shear σ). The remaining 
six σ in tension and compression must satisfy Eqs. (1.1) 
and (1.2).

The B-MM obtained was replaced by the C-MM which 
is as close as possible to the original bi-linear curve but 
has negligible Et and Gt. The same lsquarefit function was 
used in the computation, but we used an artificial upper 
bound 1.0 MPa for each Et and Gt. See Fig. 4 for a graphi-
cal illustration of both E–P material models.

The σ for normal loading must satisfy Eqs. (1.1) and 
(1.2) and thus all constants related to these loading modes 

had to be modified. We merged tension and compression 
for each of the three modes into a single diagram, which 
produced three constitutive laws; see the red curves in 
the three diagrams on the right-hand part of Fig.  4. To 
find the bi-linear constitutive law satisfying Eqs. (1.1) 
and (1.2), we looked for the best continuous piece-wise 
linear approximation with equal E in tension and com-
pression and with an Et smaller than 1.0 MPa. The opti-
mality criterion was the total sum of the residua across all 
three diagrams. The computations were performed in the 
MATLAB R2021b environment. The constitutive law for 
the resulting computational model is shown in Fig. 4 as a 
blue curve.

The fixed value of 0.4 MPa was used for all values of Et 
and Gt in the final simulation. This constant was deter-
mined by computational testing as the value which does 
not break the FEM solution.

Because of the requirements of the C-MM, the values 
of material constants obtained are different from the 
typical values observed in experiments. Recall that these 
values should not be interpreted as physical constants of 
wood. They have artificial values which are a compromise 
between the restrictions of the generalised Hill’s theory 
and the mechanical properties of wood.

FE model setup
The geometry of the FE model was a 20 × 20 × 300  mm 
rectangular volume with three rigid body supports in 

Fig. 4 Stress–strain diagrams for Tree 1 with a comparison of the B-MM by analyses of the experiments and the C-MM used in FEM simulations
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correspondence with the experimental setup. The model 
was meshed by ANSYS SOLID95 element type (quad-
ratic 20-node 3D structural solid which allows a general-
ised Hill’s material model, in terms of the ANSYS ANISO 
feature). The element size of regular sweep mesh 0.003 m 
was used as a good compromise between detail and the 
speed of the computations.

The boundary conditions in the form of 0.012  m dis-
placement of the middle support and zero displacements 
of two rigid supports were applied. Due to the use of 
the same testing machine and testing of wood with high 
MC, the parameters for the FE model were set based 
on the model by Tippner et  al. [24]. Consequently, the 
contact pairs between the solid volume and the rigid 
supports were surface-to-surface with TARGE170 and 
CONTA174 element types with a friction coefficient of 
0.13. According to the experimental setup, the probe for 
deflection was in the centre of the bottom area, opposite 
the middle loading point. The solution was divided into 
100 steps to ensure the convergence of the solution and 
recording steps of loading/response. The FEM simulation 
produced a force–deflection curve which was compared 
with the experimental one.

FE model analysis and validation
It is natural that some of the material parameters from 
the C-MM used in the FE model are less significant for 
the resulting force–deflection curve. The Ansys proba-
bilistic design system (PDS) was used to detect the most 
significant parameters and to identify correlations among 
all parameters.

A collection of 1000 computations were evaluated and 
analysed to obtain statistically significant output from the 
PDS analysis. The same configuration of the FE model 
was used. However, this high number of computations 
necessitated the reduction of computation time which 
was achieved by increasing the element size to 0.004 m.

The PDS sets random values using the Monte Carlo 
method for input parameters, runs the simulations and 
processes the outputs. When enough simulations are 
performed, a correlation between the output parameters 
and input data is revealed. However, a completely ran-
dom setting of parameters is impossible in our model, 
since there is zero probability that the conditions from 
Hill’s theory are met for random values of parameters. 
This issue was resolved by recalculating the constants 
for the R direction. The four σ from the C-MM (tension 
and compression in L and T) had random values in the 
PDS analysis and the remaining two σ (tension and com-
pression σ in the R direction) had values derived from 
formulas Eqs. (1.1) and (1.2). The other values, such as 
elastic constants and shear parameters, had random val-
ues prescribed by the PDS setting. The input range of 

parameters was defined with a Gaussian distribution by 
an average value of a parameter, and standard deviation 
matched the coefficient of variance 0.2 in all cases, which 
corresponds to the common variability in the mechanical 
properties of wood.

The following output parameters were considered 
in the PDS: the deflection and the reaction force at the 
end of the loading, the deflections at selected values 
of reaction force (20%, 40% and 75% of the force at the 
end of loading), the reaction force for selected deforma-
tions (20%, 40% and 75% of the deflection at the end of 
loading), the parameters of the linear approximation of 
the elastic part of the curve, the parameters of the lin-
ear approximation of the plastic part of the curve and 
the integral of the force–deflection curve with respect 
to deformation. The Python library Pandas was used to 
find the correlations suitable for consideration in model 
verification. These correlations were used to fine-tune the 
initial phase (the slope of the elastic part) and the termi-
nal phase (the height of the tangential part) of the curve 
in the bending force–deflection diagram. This resulted in 
a final set of 27 constants referred to as AC-MM.

The average curves of force–deflection from the experi-
ments were compared with the corresponding curves 
obtained by running the simulation in ANSYS. Since 
there were minor inaccuracies in the width and height 
of the wooden samples, all the force–deflection curves 
from the experiment were preprocessed and the curves 
adjusted to a 20  mm × 20  mm cross-section. Thus, the 
resulting curves are free of inaccuracies caused by minor 
deviations in cross-section.

Results and discussion
The verified E–P material model of green beech wood 
was created based on experimentally determined 
mechanical parameters sorted into a set of 27 material 
characteristics with their measured variability. Because 
of the theory limitation of the bi-linear-orthotopic 
approach for FEM solver (ANSYS®), the experimental 
material characteristics were processed to get constants 
for the E–P material model. The FE model using opti-
mised AC-MM shows close similarity with experimental 
curves from three-point bending.

The values of MC and the density of samples in the 
test time are shown in Table 2. There are the values of 
compression and bending samples and the values sum-
marising both groups as a more extensive dataset for 
wood coming from one tree. These data show an 80% 
MC on average with a standard deviation of 17%. This 
MC is well above the FSP and, according to Niklas and 
Spatz [3] should correspond to the MC in the standing 
tree. Table 2 also shows the values of the basic density 
with an average of 555 ± 47  kg/m3. The MC variability 
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exceeded 10% and averaged 21%; for the basic density, 
the variability slightly exceeded 10% in some cases.

Material constants for the B‑MM
The material constants of the B-MM from processing 
experimental data for each tree are in Table 3. The exper-
iments in compression R and T were performed for Tree 
1 only and the corresponding values are missing from the 
table. The way we substituted these missing data for the 
C-MM and adjusted AC-MM is described below.

Figure 3 shows the experimental stress–strain curves 
with a fitted bi-linear function that captures the average 
values of B-MM. These parameters for individual sam-
ples were determined by fitting a bi-linear function to 
each stress–strain curve separately, which proved to be 
an effective tool for evaluating the mechanical proper-
ties of wood. Our approach appeared to be more effi-
cient than the generalised approach derived from BS 
373 [35] and ČSN 49 0111 [37] used in studies [23, 43, 
46], where the linear part of the stress–strain diagram 
is specified by section between 10 and 40% or 30–60% 
of the applied force.

Some of the values of B-MM in Table  3 (namely Et) 
reveal a high variability. This comes from the fact that we 
were dealing with a biological material using a simplified 
B-MM and the material was under a high load. The parts 
of the stress–strain diagrams (Fig. 3) where the material 
fails (from the point of view of the theory of elasticity) are 
described by Et. This part shows considerable dispersion, 
therefore, the Et has high variability and significantly 
low values. This is also visible in the results of studies by 
Hong et al. [31], Milch et al. [23] and Tippner [24]. Espe-
cially for the numerically small quantities (such as Et,−L ), 
we can easily obtain a larger standard deviation than the 
average value. This, however, does not affect the applica-
bility of the material model, since it is a natural conse-
quence of the fact that values of Et are artificially low in 
order to keep the possibility of solving the ANSYS model 
within Hill’s theory.

C‑MM and FEM simulation
The graphical representation of the experimental data for 
Tree 1, the B-MM based on these data and the C-MM 
reflecting Hill’s theory assumptions are shown in Fig. 4. 
Note that the requirements of Hill’s theory have a sub-
stantial influence on the fit quality. However, even though 
some of the material values have been adjusted using 
artificial modifications, there is still agreement between 
the model and the experimental data. We believe that 
this is achieved using simultaneous fit across all loading 
modes and the global approach reflects the real proper-
ties of wood better.

The missing data from the experiments with compres-
sions R and T, which failed for Trees 2, 3 and 4, were pro-
portionally replaced by the data for Tree 1. The constant 
of proportionality was determined by the σ−L , since this 
number is a significant characteristic in the stress–strain 
diagram and is available for all four trees.

The PDS analysis was performed for random values of 
material constants and the results are graphically rep-
resented in Fig.  5. This analysis proved a strong corre-
lation between EL and the slope of the force–deflection 
curve in the elastic part ( r = 0.99 ). The other moduli ER 
and ET are not correlated with the slope ( r = −0.02 and 
r = 0.02 ). Among the correlations between the material 
constants and the characteristics describing the terminal 
phase of the curve, the strongest correlation was detected 
between σ−L and the force required to get deformation 
was 8 mm (F8) ( r = 0.89 ). Note also that there is no cor-
relation either between EL and F8 ( r = 0.18 ) nor between 
σ−L and the elastic slope of the force–deflection curve 
( r = 0.02 ). The regressions between the elastic slope and 
EL and between σ−L and F8 were used to refine the values 
of the constants EL and σ−L to get the curve from the FE 
model as close as possible to the average of the experi-
mental data.

FE model validation
Figure 6 shows the experimental curves of force–deflec-
tion for each tree, the average of the experimental curves, 

Table 2 Values of MC and basic density of compression and bending samples. The average of both types of samples is in the last row. 
The values in the table are mean and standard deviation

Samples Moisture content (%) Basic density (kg/m3)

Tree 1 Tree 2 Tree 3 Tree 4 Avg Tree 1 Tree 2 Tree 3 Tree 4 Avg

A 60 ± 7 89 ± 10 101 ± 12 83 ± 9 82 ± 18 578 ± 53 556 ± 55 531 ± 60 506 ± 67 556 ± 30

D 65 ± 5 84 ± 8 80 ± 10 78 ± 14 76 ± 12 570 ± 11 576 ± 14 531 ± 16 532 ± 12 549 ± 24

A + D 61 ± 6 86 ± 11 100 ± 10 82 ± 8 80 ± 17 581 ± 13 563 ± 17 537 ± 14 519 ± 23 555 ± 47
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the force–deflection curve from the simulation running 
for the material constants obtained by processing the 
experimental data (C-MM) as described above and the 
force–deflection curve for material constants adjusted 
using regression formulas (AC-MM). The figure shows 
that we got qualitative agreement between the experi-
mental data and the data from the FEM simulation for all 
trees. For Trees 1 and 3, we also got quantitative agree-
ment. For Tree 4 the FE model with C-MM (the black 
curve) is stiffer than the experimental curve (the red 
curve) and for Tree 2 the FE model with C-MM is less 
stiff in the elastic part and stiffer in the plastic part of 
the diagram. So that the agreement of the experimental 
curves and the FE model curves is not assessed only vis-
ually, as stated by Oudjene and Khelifa [18] and Pěnčík 
[47], the curves were checked for point-wise and inter-
val correspondence. For point-wise correspondence, 
we used the relative difference of FEM simulation from 
the experimental data. The initial interval (up to 2 mm) 
was neglected since the values are small and the relative 
error does not yield useful information. A maximum of 
the relative error was estimated on the rest of the force–
deflection curves, similarly to Milch et al. [23] and Tipp-
ner et al. [24]. The values of maximum relative error are 
5.87%, 5.60%, 4.21% and 2.56% for individual trees with 
an average of 4.56%. The integrals of the force–deflec-
tion curves over the interval from 0 to 9 mm were used 
for interval comparison of the curves. The relative errors 
between the experimental and theoretical curves were 
3.56%, 1.24%, 0.88% and 1.03% for individual trees with 
an average of 1.68%.

Three-point bending is a more complex evaluation of 
the E–P material model than the uni-axial experiment in 

Hong et al. [19]. Despite this, we still have both qualita-
tive and partial quantitative compliance between the 
FEM simulation and the experimental result. It has been 
shown that compliance can be improved by adjusting the 
constants which govern the shape of the force–deflection 
curve. More precisely, using the correlation from PDS 
analysis, we were able to adjust the value σ−L to get the 
terminal part of the computed curve close to the experi-
ment. This output with adjusted data (AC-MM) is shown 
as a blue curve in Fig. 6. The constants for the AC-MM 
models are summarised in Table 3 in parentheses.

Conclusions
The material properties of green wood are crucial in 
developing reliable models of trees under static and 
dynamic load and for predicting tree failure. We per-
formed experiments on 655 samples to determine the 
main mechanical characteristics of beech green wood. 
The data obtained were used to develop an E–P mate-
rial model, which was verified using a three-point bend-
ing test. Comparison of force–deflection curves from the 
experiment and from the FE model with C-MM show 
sufficient accuracy (maximum relative error 4.56%, rela-
tive error 1.68% for interval comparison).

The experiments resulted in a set of mechanical char-
acteristics with natural variability derived from destruc-
tive tests with uni-axial load in compression, tension 
and shear. The correspondence between the C-MM and 
the experiment proves that the material characteristics 
obtained from the experiments with uni-axial loading 
can be used to build a complex E–P material model. It 
was verified that the simplified E–P material model con-
sisting of a bi-linear constitutive law for each loading type 

Fig. 5 Heat map with correlation coefficients between E–P material models based on C-MM and output characteristics. Only selected output 
parameters are shown (elastic and plastic slope, plastic intercept, force at the end of the experiment, integral of force concerning deformation 
and force required for deformation 8 mm)
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can be used as a starting point to build a model suitable 
for numerical simulations in the scope of the generalised 
Hill’s theory.

Important material properties governing a particu-
lar case of three-point bending were determined by 
statistically processing 1,000 numerical simulations in 

Fig. 6 Force–deflection curves for trees and for an average model. The figures for single trees show the experimental curves, the average 
experimental curve, the FE model with data from the C-MM and the curve from the FE model with AC-MM according to the elastic slope and force 
for a deformation of 8 mm. The last picture shows all experimental data as a single set with averages of single trees, the total average of all data 
and both E–P material models (raw and adjusted)
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probabilistic analysis. The regression model based on 
these simulations was successfully used to improve the 
correspondence between the output of numerical simula-
tion and the real experiment.

The main goal of the research, to build a complex E–P 
material model which allows the handling of the elastic 
and plastic deformation of wood, was achieved. For Euro-
pean beech (Fagus sylvatica L.) green wood (80% MC and 
555  kg/m3 basic density—Table  2.) without any defects, 
we produced a set of validated constants (Table  3) for 
direct use in structural analyses in a complex loading 
scenario. These results reveal the real mechanical charac-
teristics of green beech wood, but above all offer a set of 
constants that can be used primarily in tree biomechan-
ics—for example, in the numerical simulation of static or 
dynamic loading. However, the use of the E–P model is 
not limited to the tree biomechanics field, it can be also 
used in FEM simulations of beech wood with MC above 
FSP in the wood processing industry applications such as 
the assessment or processing of beech wood.

Our work proved that an orthotropic E–P material 
model based on experimental values can describe green 
wood under load. The use of this E–P material model for 
beech green wood in tree biomechanics or raw material 
processing can bring numerical simulations in FEM soft-
ware even closer to reality.

The procedure for model building we tested is applica-
ble for the development of relevant E–P material models 
of other wood species under changing conditions (MC, 
decay). Due to the high natural variability of wood, how-
ever, other issues arise, such as the E–P material model 
of wood with defects caused by rot, knots, etc. Moreo-
ver, the applicability of the E–P model can be assessed in 
wood processing by testing both green wood and wood 
with MC suitable for structural use, both obtained from 
the same tree. Testing the developed E–P model in more 
realistic larger scale cylindrical orthotropy might be the 
next step in model expansion. Another possible develop-
ment of this work is to try to simplify the material model. 
Since the properties in the L direction are very different 
from those in the R and T directions, it could be useful 
to examine if it is possible to simplify the C-MM by not 
distinguishing the latter directions and considering the 
longitudinal and non-longitudinal directions only.

Abbreviations
L  Longitudinal direction according to Hearmon [34]
R  Radial direction according to Hearmon [34]
T   Radial direction according to Hearmon [34]
E+i  Elastic modulus in direction i  for tension, where i  is one of L, R, and 

T
E−i  Elastic modulus in direction i  for compression, where i  is one of L, 

R, and T
Ei  Common value of E+i and E−i in FEM model
Et ,+i  Plastic modulus for tension in direction i  , where i  is one of L, R, and 

T

Et ,−i  Plastic modulus for compression in direction i  , where i  is one of L, 
R, and T

σ+i  Yield in tension in direction i  , where i  is one of L, R, and T
σ−i  Yield in compression in direction i  , where i  is one of L, R, and T
Gij  Shear elastic modulus in ij  plane, where ij  is one of LR, LT, and RT
Gt ,ij  Shear tangential modulus in ij  plane, where ij  is one of LR, LT, and 

RT
σij  Shear yield in ij  plane, where ij  is one of LR, LT, and RT
µij  Major Poisson ratio for ij  plane, where ij  is one of LR, LT, and RT
F8  Force required for deformation 8 mm in the middle of the bottom 

side of the beam
FEND  Force at the end of the experiment
FE/FEM  Finite-element/finite-element method/finite-element analysis
FEA  Finite-element analysis
DIC  Digital image correlation
FSP  Fibre saturation point
MC  Moisture content
PDS  Probabilistic design system
CCD  Charge-coupled device
r   Spearman correlation coefficient
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