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Abstract: The aim of this research is tomeasure the dielectric
properties and electromagnetic interference (EMI) shielding
effectiveness (SE) of silicone rubber reinforcedwith graphene
nanoplates. In a two-roll mill, different amounts of

graphene aremixed together. This is followed by compression
moulding at 170°C and post-curing for 4 h at 200°C. Between
1MHz and 1GHz, the waveguide transmission line method
and a vector network analyser are used tomeasure the dielec-
tric and EMI SE parameters. As the amount of graphene is
increased from 0 to 7wt%, AC conductivity goes up, reaching
1.19 × 10−3 S/cm at 7 wt%. The same composition gives the
highest EMI SE of 43.22 dB at 1 GHz. The high-frequency
structural simulation of different compositions shows how
shielding works, and the results agree with what has been
seen in experiments.

Keywords: silicone rubber, graphene, nanocomposites,
EMI SE, dielectric

1 Introduction

The increasing use of electronic equipment in various
industries, such as defence, aerospace, automotive, and
even ordinary life, has led to massive electromagnetic
(EM) radiation exposure. It is incomprehensible that online
education and the work-from-home culture would have
taken off in the post-covid era without computers, mobile
phones, Wi-Fi, and other electronic devices [1]. When one
electronic equipment sends erroneous or accidental electro-
magnetic (EM) signals that interfere with and impair the
performance of another electronic device, this is known as
electromagnetic interference (EMI). It may cause electrical
implants in the human body tomalfunction and pose health
dangers [2,3]. However, our dependence on technological
gadgets has reached such a level that abandoning them
would be a “crazy fantasy.” One possible approach is
shielding sensitive electronics from EM radiation, also
known as EMI shielding (EMI shielding).

Historically, various metals have been used for
EMI shielding, but their limitations include their high
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density, poor corrosion resistance, and high price [4].
Strong conductivity, lightweight, and good manufac-
turing capabilities are necessary for the EMI shielding
material without sacrificing mechanical performance
[5]. EMI shielding performance may be considerably
improved by enhancing conductivity with a suitable filler
[5]. Polymer composites with suitable fillers may be viable
solutions for meeting these property specifications. Polymer
is mixed with various fillers, including metals, carbon
black, graphite, ferrite, and graphene.

Silicone rubber (SR), a low-density elastomer, is uti-
lised in several applications due to its easy formability,
chemical resistance, and weather resistance. Nonetheless,
SR is an insulating material that EMI waves can easily pass
through. Including conductive fillers increases SR’s conduc-
tivity to attain the necessary EMI shielding properties. This
conductive SR is commonly employed in EMI shielding
applications [6]. Carbon black [7–9], carbon fibres [10,11],
and graphene [9,12,13], are commonly used fillers in SR [13].
The conductivity of SR rises with an increase in filler per-
centage, resulting in better EMI shielding effectiveness (SE).
Other varieties of SR, such as RTV, HTV, and PDMS, are also
investigated.

Additionally, graphene is frequently used with dif-
ferent matrix materials to improve the conductivity of
polymers. Bregman et al. [7] investigated the complex
electromagnetic characteristics of graphene nanoplatelet
reinforced in poly-lactic acid. The SR containing carbon
and ferrite powder’s EMI SE varies with frequency for
samples with low conductivity. However, samples with
high conductivity demonstrate consistent performance
[14]. A 3D conductive structure made of silver nanowires
and graphene oxides is created in the PDMS matrix using
the hydrogel approach. This results in a 34.1 dB absorp-
tion-dominated EMI SE [15]. SR with magnetic microwires
and graphene fibres improves SE by 18 dB. Ultrasonic
mixing, and degassing produces a frequency-selective
EMI SE material from SR (methyl vinyl) graphene. The
EMI SE improves with an SE of 30.42 dB [16].

Literature analysis reveals that different production
processes are utilised to manufacture various grades of
graphene-coated SR. This research uses common rubber
processing techniques. SR (SH5060U grade) and gra-
phene nanocomposite are produced for EMI shielding
applications. As a result, the developed nanocomposite
is easily adaptable and practical for commercial use. It is
reported that SR/graphene nanocomposite has complex
dielectric properties and EMI SE. A simulation run on the
Ansys high-frequency structural simulation (HFSS) soft-
ware supports the findings.

2 Materials, manufacturing, and
experimental details

2.1 Constituent material details

SR of grade SH5060U and the peroxide-based accelerator
known as Di-Cup-40 are both supplied by Krupa Chemicals,
Pune, India (dicumyl peroxide; DCP). A graphene sheet can
have five to ten layers, 5–10 nm thick, and a typical lateral
dimension of 10 nm. The material specifications are pre-
sented in Table 1.

2.2 Manufacturing details of composite

The graphene-based SR and DCP compound SRG1, SRG2,
SRG3, SRG4, and SRG5 have varying graphene weight
fractions 0, 1, 3, 5, and 7%, respectively. SRG1, SRG2,
SRG3, SRG4, and SRG5 are the names given to these gra-
phene weight fractions, respectively. Figure 1 depicts the
manufacturing process, and Table 2 lists the filler and
curing agent compositions used with SR. The procedure’s
first phase is used to combine the SR and graphene in a
machine with two rolls. The compound is then moulded
for 5 min at a moulding pressure of 50 bars using a com-
pression moulding machine (make: SANTEC, capacity: 30
tonnes). The post-curing procedure takes place for 4 h at
a temperature of 200°C in an oven with hot air (made by
Athena Technology; the model number is ATAO-3S/G).

2.3 Experimental details

Several dielectric and EMI SE domains are tested using
three distinct compositions, each with three samples.
FESEM and FTIR investigations are also performed to
confirm graphene dispersion and understand how the

Table 1: Material property details

Type/grade SR (SH5060 U) Graphene

Specific gravity (g/cc) 1.15 1.6
Tensile strength, ultimate 5 MPa 130 GPa
Elongation (%) 500 5
Hardness, shore 50 (A) 70 HRC
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composite developed. The following sections will cover
the specifics of each characterisation that was previously
addressed. The images created by the scanning electron
microscope (SEM) are captured using a VEGA 3TSCAN
device with ultra-high resolution. The tool used for FTIR
spectroscopy is a Shimadzu Miracle with ART.

2.4 EMI and dielectric analysis

On compression-moulded samples that were 1 mm thick,
the waveguide transmission line method was utilised on
a vector network analyser (VNA) (Agilent Technologies
E5071C, ENA series, 1 MHz to 1 GHz, CA). The S11 and S12
scattering properties are measured, and the EMI SE is cal-
culated. The built-in software uses the Nicolson–Ross–Weir
(NRW) technique to estimate the dielectric characteristics
with the scattering factors (S11 and S12) as inputs. The S-
parameters can be used to determine the components of
reflection and absorption.

3 Results and discussion

3.1 Morphological characteristics

The microstructure of several SR/graphene mixes was
examined using SEM. Figure 2 shows pictures taken
with a SEM at 100× magnification. Due to the composi-
tions’ inability to be combined, distinct phases of SR and
graphene may be seen in SR/graphene compositions.
Figure 2 depicts the graphene dispersion in the rubber
matrix (a–f). The weight percent of graphene is increasing
in Figure 2. The pattern of surface ripples characterises the
unique shape of graphene dispersion. The microstructure
makes it simple to see how evenly the graphene particles
are dispersed throughout the SR matrix.

Figure 3 shows the FTIR spectra for every possible
mix of SR and graphene. These spectra show where sili-
cone-containing groups are distributed. All samples can
exhibit the fundamental functional group of SR at wave-
numbers between 500 and 1,300 cm−1. Si–O–Si stretching,
Si–O of O–Si(CH3)2–O, and Si–CH3 symmetry bending all
reach their maximum values at 1,010, 789, and 1,257 cm−1,
respectively. The measured FTIR peak intensities experi-
ence a slight attenuation due to the presence of graphene.
This result could be explained by the graphene barrier
impeding the detection of Si chemical bonds in SR
[17,18]. It was discovered that all samples included a

Figure 1: Schematic representation of the manufacturing process.

Table 2: Weight percentages of filler and curing agent

Type/grade SRG1 SRG2 SRG3 SRG4 SRG5

Graphene 0 1 3 5 7
DCP 2 2 2 2 2
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carboxyl group in the graphene molecule at wavenumber
1,720 in addition to the Si bonds.

3.2 Conductivity and dielectric properties

The VNA is used to analyse the SR reinforced with multi-
walled graphene’s dielectric properties between 1MHz and
1 GHz. The frequency dependence of conductivity for var-
ious compositions is shown in Figure 4(a). It has been
demonstrated that as the filler content rises, so does the
AC conductivity. Figure 4a illustrates a significant increase
in conductivity for the SRG3 (3wt%) graphene composition.
This indicates that the SRG percolation threshold is 3%
graphene by weight. The most significant increase in con-
ductivity is seen in the SRG5 composition with a 7% gra-
phene loading, measuring 2.26 × 10−3 S/cm. The formation
of conductive network results in the transport of electrons

Figure 2: SEM micrographs of (a) graphene powder and surfaces of (b) SRG1, (c) SRG2, (d) SRG3, (e) SRG4, and (f) SRG5 composition.

Figure 3: FTIR spectrums of graphene and all nanocomposite
samples.
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because of the dense population of graphene [12]. Conduc-
tivity is additionally increased by graphene’s high aspect
ratio and efficient dispersion. At 1 GHz, the SRG1 composi-
tion’s conductivity is close to zero, while the SRG5 compo-
sition’s conductivity rises to 2.98 × 10−3 S/cm.

Dielectric permittivity is the measure of a material's
capacity to store electric charge, hence a greater value of
permittivity indicates a greater capacity to store electric
charge. Understanding the EMI SE performance of the
material requires this feature. The real (ε′) and imaginary
(ε″) components of the permittivity are each shown in
Figure 4(b and c), respectively. It is clearly demonstrated
that both permittivity components get better when gra-
phene content increases. With the increase in the gra-
phene content, Figure 4c shows a further increase in the
loss tangent. Compared to pure SR, the ε′ and ε″ values for
the SRG2 sample increase by about 10–15% (SRG1). ε′,
which is 5@ 1MHz for a 7% graphene (SRG5) sample, is
shown to increase with the increase in graphene content.

The free charge carriers cause graphene’s Maxwell–
Wagner–Sillar (MWS) effect. This causes interfacial and
electronic polarisation and increases the relative permit-
tivity as the amount of graphene increases [19]. The ε′
increases as graphene’s weight percentage crosses the per-
colation barrier. This causes the SR/graphene interphases
to rise, thereby raising the interfacial polarisation. The
MWS effect indicates that the permittivity dramatically
increases as the charge accumulates at the contact [20,21].

The ε″ is linked to energy loss in the case of conduc-
tive materials. With an increase in the graphene content,
ε″ is consistently seen to rise, with SRG5 exhibiting the
most significant rise. This may support creating a gra-
phene conductive network and the homogeneous disper-
sion of graphene throughout the rubber matrix. For SRG1
composition, the dielectric loss ε″ is 0.05@1MHz, while it
rises to 0.075@1MHz for SRG5 composition. The absorp-
tion mechanism of the graphene percolation network pro-
duces a higher EM wave dissipation. The loss tangent of

Figure 4: (a) Conductivity; (b) complex permittivity real part (ε′); (c) complex permittivity imaginary part (ε″); and (d) dielectric loss tangent
(tan δ) vs frequency.
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various compositions varies as a function of frequencies,
as illustrated in Figure 4(d). The loss tangent has a similar
pattern to the imaginary permittivity part. The frequency of
SRG1 composition is around 0.01@1MHz,while the frequency
of SRG5 composition is approximately 0.022@1MHz. As seen
in the SEM images, the increased graphene content forms a
conductive network that enhances the loss tangent of the
SRG4 and SRG5 samples. The increased density of graphene
expedites fillers’ contact and manifests the network [22].

3.3 EMI SE

The SE [23], expressed as a logarithmic ratio of incident
power to transmitted power, is a unit of measurement. EMI
SE is mainly influenced by the material’s conductivity and

dielectric properties, excluding thickness and frequency
[24]. This could be achieved by adding conductive nano
fillers like graphene to the rubber matrix.

After electromagnetic waves enter a material, their
three main impacts are reflection, absorption, and mul-
tiple reflections. If the shielding material is conductive,
incident EM waves are reflected by the free electrons
available at the surface. The loss of waves occurs when
electromagnetic waves interact with electric dipoles due
to this absorption. It is also important to note that the
third element, numerous reflections, is completely disre-
garded when SE is higher than 10 dB [25].

( ) = +Total SE dB SE SE ,T R A (1)

where SER is SE due to the reflected component, and SEA
SE is the absorbed component.

Figure 5: SE in the range of 1 MHz to 1 GHz: (a) total SET; (b) absorption SEA; and (c) reflection SER.
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Equations (2) and (3) give the SE by absorption (SEA)
and reflection (SER) loss, where S11 and S12 scattering
parameters are measured using a VNA [26].

( )

( )
= −

−

S
S

SE 10log
1

,A
12

2

11
2 (2)

( )= − − SSE 10log 1 .R 11
2 (3)

As previously demonstrated, graphene’s conductivity
and dispersion in the SR matrix are crucial to SE. Since the
suggested nanocomposites exhibit superior conductivity
and dielectric properties with a rise in graphene weight
percentage, improved EMI SE performance is anticipated.
Realistic applications must meet EMI SE criteria of 20 dB,
or 1% transmittance.

The shielding mechanism is crucial for the materials
to be employed for shielding purposes. Figure 5(a)–(c)
demonstrate, respectively, the variation in total (SET),
absorption (SEA), and reflection (SER) SE concerning
change in frequency. The sum of the SEs from absorption
and reflection is the SE (SET). The figure shows that the
absorption component is more important than the reflec-
tion component. Over the whole frequency range, the SEA
and SER for SRG1 composition are between 1.9 and 2.9 dB
and 0.22 dB, respectively. With SRG5 composition, the
SEA and SER values can reach as high as 39.6 and 6.52 dB,
respectively, for the same frequency range. The conducting
interfaces expedite numerous reflections causing more
excellent SEA component [27]. The high aspect ratio and
conductive network due to the addition of graphene filler
are responsible for the multiple reflections. These internal
surfaces reduce the energy of EM waves and, in turn, their
absorption. Notably, the SEA is almost constant for all

compositions over the whole frequency range. However,
when the frequency rises, SER tends to fall. The suggested
nanocomposite material is suitable for EMI shielding appli-
cations in the 1MHz to 1 GHz frequency range since the SE is
more significant than 20 dB and the SET is steady over the
whole frequency range.

The effects of various compositions on conductivity
and EMI SE are depicted in Figures 6(a) and (b). Com-
paring the two charts reveals that EMI SE rises as con-
ductivity rises. At frequencies of 1 MHz and 1 GHz, the
EMI SE is 3.63 and 0.74 dB, respectively, while the con-
ductivity of the SRG1 composition is close to zero. With
the increase in graphene loading in the SRG5 composi-
tion, EMI SE rises and peaks at 32.94 dB at 1 MHz and
43.22 dB at 1 GHz for a total EMI SE of 32.94 dB. Due to
its impact on EMI SE, graphene’s physical characteristics,
including surface area, aspect ratio, and the availability
of extra atoms on top, may be explained. Free electrons
are more readily available when graphene’s weight per-
centage increases, which enhances conductivity and SE.

3.4 Simulation of EMI SE

The HFSS model was made to test and understand how
different SR/graphene compositions block EMI. Figure 7
illustrates how the model simulation sheds light on how
electromagnetic waves propagate through various com-
positions. Ansys HFSS simulates an experimental set-up
like the one used to measure S parameters. For the fre-
quency range of 1–3 GHz, a WR510 waveguide is simulated.

Figure 6: Change in (a) conductivity and (b) SE with the change in weight percentage of graphene.
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Air is the transmission medium inside the wave port. Since
a wave port excitation is possible in the HFSS, it is applied
to S1 (port 1) and S2 (port 2). Transverse electrical excitation
is generated at Port 1 and received at Port 2. In the centre of
the waveguide, a shielding plate that is 1mm thick is cre-
ated. The measured dielectric properties from the experi-
ments are transferred to the shielding plate. 0.1 GHz is the
simulated frequency step.

An SR plate consisting of SRG1, a pure SR composi-
tion, is shown in Figure 7 to be penetrated by electromag-
netic waves. Additionally, there is virtually no difference
in the EM field intensity between ports S1 and S2. Experi-
mental findings show that the SRG1 composition has a

lower standard deviation and poorer electromagnetic
wave attenuation (SE). The use of graphene increased
the composite’s conductivity and changed the path along
which the EM energy and EM field propagate. Despite
more uniformly distributed magnetic fields, electric field
is more potent in the centre than at the edges.

The strength of the electric and magnetic fields is
significantly decreased with a graphene loading of 5%,
indicating an increase in shielding efficiency (36 dB). The
electric and magnetic fields were virtually minimised by
the SRG5 composition (7 wt% loadings). This is due to the
conductor network in the SRG5 composition. The fact that
none of the compositions is affected by the EM waves’

Figure 7: Complex Mag E plots from HFSS simulation of SRG compositions for WR510 waveguide frequency range 1–3 GHz: (a) SRG1,
(b) SRG2, (c) SRG3, (d) SRG4, and (e) SRG5.
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magnetic field is significant because it demonstrates how
little magnetic loss there is where the plates and waves
meet. The attenuation is caused by reflection and absorp-
tion losses, consistent with the experimental results.

4 Conclusion

Using a technique called “compression moulding,” the
SR/graphene nanocomposite was made, and its dielectric
and EMI SE performance was measured. The formation of
a percolation network in graphene gives rise to the mate-
rial’s outstanding dielectric properties. It has been estab-
lished that 3 wt% of graphene is required to exceed the
percolation threshold (SRG3 composition). The increase
in SR–graphene interactions leads to a rise in interfacial
polarisation. Due to the increase in graphene concentra-
tion, the dielectric and EMI SE performance improvement
within the frequency range of 1 MHz to 1 GHz is noticed.
For a sample that is 1 mm thick, the EMI SE of the SRG5
composition varies from 32.94 to 43.22 dB as the fre-
quency changes from 1MHz to 1 GHz. It has been found
that the absorption mechanism makes up most of the
entire EMI SE. As proven by experiments, the HFSS simu-
lation of the EM waves validates and supports the com-
posite’s performance. This study is easily adaptable and
potentially successful in the commercial sphere because
it offers the adoption of a straightforward rubber proces-
sing approach for manufacturing the nanocomposite for
EMI SE applications.
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