
Citation: Das, S.; Guha, P.; Nath, M.;

Das, S.; Sen, S.; Sahu, J.; Kopanska,

M.; Dutta, S.; Jamal, Q.M.S.; Kesari,

K.K.; et al. A Comparative

Cross-Platform Analysis to Identify

Potential Biomarker Genes for

Evaluation of Teratozoospermia and

Azoospermia. Genes 2022, 13, 1721.

https://doi.org/10.3390/

genes13101721

Academic Editor: Tomaiuolo

Rossella

Received: 19 July 2022

Accepted: 19 September 2022

Published: 25 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

A Comparative Cross-Platform Analysis to Identify Potential
Biomarker Genes for Evaluation of Teratozoospermia
and Azoospermia
Suchismita Das 1, Pokhraj Guha 2, Monika Nath 1, Sandipan Das 1, Surojit Sen 3 , Jagajjit Sahu 4 ,
Marta Kopanska 5 , Sulagna Dutta 6 , Qazi Mohammad Sajid Jamal 7 , Kavindra Kumar Kesari 8 ,
Pallav Sengupta 9 , Petr Slama 10 and Shubhadeep Roychoudhury 1,*

1 Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
2 Department of Zoology, Garhbeta College, Garhbeta 721127, India
3 Department of Zoology, Mariani College, Mariani 785634, India
4 GyanArras Academy, Gothapatna, Malipada, Bhubaneswar 751003, India
5 Department of Pathophysiology, Institute of Medical Sciences, College of Medical Sciences,

University of Rzeszow, 35959 Rzeszow, Poland
6 School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER),

Chennai 600126, India
7 Department of Health Informatics, College of Public Health and Health Informatics, Qassim University,

Al Bukayriyah 52741, Saudi Arabia
8 Department of Applied Physics, Aalto University, 00076 Espoo, Finland
9 Physiology Unit, Department of Biomedical Sciences, College of Medicine, Gulf Medical University,

Ajman 4184, United Arab Emirates
10 Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology

and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
* Correspondence: shubhadeep1@gmail.com

Abstract: Male infertility is a global public health concern. Teratozoospermia is a qualitative anomaly
of spermatozoa morphology, contributing significantly to male infertility, whereas azoospermia is
the complete absence of spermatozoa in the ejaculate. Thus, there is a serious need for unveiling the
common origin and/or connection between both of these diseases, if any. This study aims to identify
common potential biomarker genes of these two diseases via an in silico approach using a meta-
analysis of microarray data. In this study, a differential expression analysis of genes was performed
on four publicly available RNA microarray datasets, two each from teratozoospermia (GSE6872 and
GSE6967) and azoospermia (GSE145467 and GSE25518). From the analysis, 118 DEGs were found to
be common to teratozoospermia and azoospermia, and, interestingly, sperm autoantigenic protein
17 (SPA17) was found to possess the highest fold change value among all the DEGs (9.471), while
coiled-coil domain-containing 90B (CCDC90B) and coiled-coil domain-containing 91 (CCDC91) genes
were found to be common among three of analyses, i.e., Network Analyst, ExAtlas, and GEO2R.
This observation indicates that SPA17, CCDC90B, and CCDC91 genes might have significant roles to
play as potential biomarkers for teratozoospermia and azoospermia. Thus, our study opens a new
window of research in this area and can provide an important theoretical basis for the diagnosis and
treatment of both these diseases.

Keywords: male infertility; teratozoospermia; azoospermia; biomarker genes; SPA17; CCDC90B;
CCDC91

1. Introduction

The worldwide decline in human semen quality has placed reproductive genetics at
the forefront of scientific research on human reproduction and fertility. Male infertility is a
combination of complex reproductive ailments with substantial genetic backgrounds [1]. It
is characterized by the failure to achieve successful pregnancy after a year of unprotected
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intercourse [2]. It affects more than 20 million men worldwide [3,4] and the majority of
these cases have been diagnosed as idiopathic [5]. Infertile males are characterized by
several spermatozoa abnormalities which can be both qualitative and quantitative [6]. Two
such diseases which are posing threat to the overall reproductive health of the human
populations worldwide are teratozoospermia and azoospermia. Teratozoospermia is one
of the emergent qualitative spermatozoa dysfunctions that affect people throughout the
world [7] and is defined as the presence of morphologically abnormal spermatozoa in the
semen [8]. Sperm morphology is one of the most vital and involute features to define the
fertilization capacity of male germ cells [9]. Conversely, azoospermia is a quantitative
spermatozoa abnormality represented by the complete absence of spermatozoa in the
ejaculate. It is found in approximately 1% of all men and 10% to 15% of infertile males [10].
The etiology of teratozoospermia is closely related to endocrine disorders, environmental
factors, life experiences, and molecular defects [11,12]. There are three categorial etiologies
of azoospermia, viz, pre-testicular, testicular, and post-testicular [10].

In most cases, the genuine cause of these major types of spermatozoa dysfunctions is
unidentified, although some substantial associations have been documented in previous
reports [13]. Consequently, the mechanisms leading to these major types of spermatozoa
dysfunctions need to be better understood to develop more efficacious treatment strategies.
Semen analysis acts as the keystone for identifying spermatozoa abnormalities that lead
to male infertility [14]. However, a routine semen analysis can only predict the presence
of any abnormality in males and estimate the severity of the problem [14]. Discovering
the cause of the abnormality will require epigenetics and deep sequencing studies for the
diagnosis of male infertility to identify spermatozoa epigenetic disorders [15–17], sperma-
tozoa small noncoding RNA defects [18,19], and other subtle genetic abnormalities that
may affect fertilizing potential [20]. Therefore, increasing attention has been given to the
function and significance of mRNA in the development and maintenance of spermatozoa.
Thus, mRNAs that help to detect spermatozoa abnormalities are potential biomarkers for
assessing spermatozoa quality in infertility diagnosis and treatment [21]. Many genes
showed a negative association with spermatozoa functioning, for example, aurora kinase
C (AURKC), spermatogenesis-associated 16 (SPATA16), protein interacting with C kinase
(PICK1), septin 12 (SEPTIN12), and nanos C2HC–type zinc finger 1 (NANOS1) [22]. In
addition, ATP/GTP binding protein like 4 (AGBL4) has been found to be upregulated in
the spermatozoa of teratozoospermic men [11]. According to Wang et al., the septin 14
(SEPT14) gene is predominantly expressed in the testes and neurons [23]. Spermatozoa
with SEPT14 mutations show severe structural defects and high levels of DNA damage [16].
Thus, the identification and analysis of such genes are of great clinical importance for the
effective treatment of genetically defective patients and expected therapeutic outcomes
for infertile individuals [11]. In an earlier study by Han et al., teratozoospermia datasets
were intensively screened using gene set enrichment analysis (GSEA) and weighted cor-
relation network analysis (WGCNA) to find three potential biomarkers, namely, AGBL4,
FAM172A, and RUNDC3B, in the teratozoospermia patient group [11]. Another recent
study aimed towards finding differentiated genes in the case of patients suffering from
azoospermia [24]. However, our work is a pioneering attempt to identify differentially
expressed genes that are common to both teratozoospermia and azoospermia, using robust
workflow, with the objective to unveil which markers, if any, have a significant role in the
process of gametogenesis and spermatozoa development.

Moreover, it is important to find new treatment approaches to avoid time-consuming
and painful options, as well as to understand the molecular changes in infertility. Mi-
croarray has been widely utilized in recent times to identify candidate biomarkers and
therapeutic targets by studying changes in genome-wide gene expressions [25,26]. Some
of the circumscribing factors leading to the discordant findings are minute sample sizes,
various microarray systems, and different statistical methods. To address these limitations,
meta-analysis provides a potent and suitable approach to combining datasets from dif-
ferent studies to improve the reliability and accuracy of findings by increasing statistical
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power. Gene expression meta-analysis provides incipient biological insights and identifies
more precise biomarkers and therapeutic targets [27]. The present study was conducted
to identify differentially expressed genes (DEGs) associated with teratozoospermia and
azoospermia by performing a meta-analysis on available microarray datasets to understand
the common underlying molecular mechanisms. Further, in this clinical condition, we
tried to find specific genes to understand the disease mechanism through a protein-protein
interaction (PPI) network.

2. Materials and Methods
2.1. Microarray Data

The National Center for Biotechnology Information-Gene Expression Omnibus (NCBI-
GEO) database (http://www.ncbi.nil.nih.gov/geo/, accessed on 1 July 2020) was used
to collect suitable gene expression microarray samples [28]. A detailed search was con-
ducted of the GEO database using the individual keywords “teratozoospermia” AND
“azoospermia”. Two datasets for teratozoospermia, i.e., GSE6872 and GSE6967, and two
datasets for azoospermia, i.e., GSE145467 and GSE25518 were included in our study from
the NCBI-GEO database, considering their fulfillment of certain criteria. The datasets which
did not show any significant genes in GEO2R were excluded from our study. In the case
of teratozoospermia, microarray was used for purified spermatozoa obtained from the
ejaculate, while in the case of azoospermia, there is the complete absence of spermatozoa
so tissues from testes were used for microarray. Testes tissues contain spermatogonial
stem cells (SSCs) which produce spermatozoa through the process of spermatogenesis [29];
therefore, there exists a common origin between the cell type of teratozoospermia and
azoospermia. The samples required for the study were collected from both healthy controls
and patients. In the teratozoospermia study, controls can be defined as normal fertile
males who have fathered at least one child, while in the azoospermia study, males with
normal spermatogenesis processes can be considered as controls. The samples for the
teratozoospermic study were collected from men aged between 21–57 years while in the
case of the azoospermic study, the samples were collected from men of reproductive age.
The subjects from whom the samples were collected for teratozoospermic and azoospermic
study belonged to the American (from USA and Argentina) and European (from Slovenia)
populations, respectively. The gene expression profiling was mainly based on abnormal
spermatozoa and tissues of testes. The inclusion criteria that were used while choosing the
datasets for meta-analyses are mentioned below:

(i) the sample type should contain RNA only for both “teratozoospermia” and “azoosper-
mia” datasets,

(ii) datasets must not contain intersecting/duplicate data,
(iii) datasets must not be generated from the same research laboratory,
(iv) datasets must be heterogeneous in terms of microarray platform, and
(v) each dataset must contain enough data to carry out a meta-analysis (Table 1). The

datasets that matched those inclusion criteria were selected for the present meta-analyses.

Table 1. List of microarray datasets included in the study obtained from the National Center for
Biotechnology Information-Gene Expression Omnibus (NCBI-GEO) database for teratozoospermia
and azoospermia.

Sl. No. GEO
Accession

Subject
Sample Analytical Platform Patient Type Ref.Patient Control Total

1 GSE6872 8 13 21 Spermatozoa
GPL570 ([HG-U133_Plus_2]
Affymetrix Human Genome

U133 Plus 2.0 Array)
Teratozoospermia [30]

2 GSE6967 8 5 13 Spermatozoa GPL2507 (Sentrix Human-6
Expression BeadChip) Teratozoospermia [30]

http://www.ncbi.nil.nih.gov/geo/
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Table 1. Cont.

Sl. No. GEO
Accession

Subject
Sample Analytical Platform Patient Type Ref.Patient Control Total

3 GSE145467 10 10 20 Testis
tissue

GPL4133 (Agilent-014850
Whole Human Genome

Microarray 4x44K G4112F
(Feature Number Version))

Azoospermia [31]

4 GSE25518 19 4 23 Testis
tissue

GPL570 ([HG-U133_Plus_2]
Affymetrix Human Genome

U133 Plus 2.0 Array)
Azoospermia [32]

GEO: Gene Expression Omnibus, GPL: GEO Platform, GSE: Genomic Spatial Event.

2.2. DEG Screening and Meta-Analyses

ExAtlas meta-analyses software was used to carry out the analysis of microarray
expression data [33]. A total of four GEO datasets were included in the study and the
expression profiles of those datasets were extracted using the GEO database. The quantile
method was used for the standardization of the data [34]. The datasets were downloaded
and saved individually and then merged using the batch normalization method. Gene-
specific batch normalization was used to combine two or more datasets. If two datasets
included the same tissue or organ, then the median expression levels for the common
tissue/organ were neutralized in the two datasets using this method.

ExAtlas and NIA Array Analysis have the same algorithm for statistical analysis [35].
Gene expression values were converted into a log form and used for the analysis of variance
(ANOVA) [35], which was modified for multiple hypotheses testing cases. Moreover, the
false discovery rate (FDR) [36] was used to evaluate the importance of gene expression
changes in place of p-values. Thereafter, meta-analyses were carried out based on the saved
datasets using the random effect method [37] and lists of DEGs were saved as a gene set
file. The random effects method considers the variance of heterogeneity among different
studies, which is added to the variance of individual effects. Here the term “effect” means
the log ratio of gene expression change/difference compared to the control or study-wide
mean or median [38].

The raw datasets were simultaneously analyzed with another software named Net-
work Analyst 3.0 [35]. Upon combining the datasets after their standardization, 15,879 fea-
ture numbers were identified and then subjected to batch effect adjustment using Com-
bat [34]. Meta-analyses were then performed on the combined dataset using a random effect
model with the p-value set to less than 0.05 and FDR to less than or equal to 2. FDR can act
as an effective indicator of the strength of a study and the p-value can be useful for statistical
power analyses. It can also be used to examine thousands of features, such as all the genes
of an organism, and measure their expression related to the above-mentioned diseases. The
Limma package of R/Bioconductor was utilized for the recognition of DEGs [39].

In addition, gene expression analyses were performed on all the datasets individually
using GEO2R [40]. Quantile standardization was carried out and Benjamini and Hochberg’s
false discovery rate method [41] was selected by default for GEO2R analysis since it is
mostly used for the adjustment of microarray data and also provides a good balance
between the discovery of statistically significant genes and limitation of false positives.

2.3. Comparative Analyses

A comparison of DEGs from both analyses was carried out and the common genes
were marked. The marked genes have an annotation set to the official gene symbol which
was then rectified using the db2dbtool of the Biological Database Network (BDN) [42]. In
addition, GEO2R was used to generate the gene expression output of all those datasets
for comparison [31]. The common DEGs were then marked and also compared with the
output of ExAtlas and Network Analyst 3.0. A heatmap was then constructed using the
DEGs with the help of the Complex Heatmap Package of R [43].
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2.4. Protein-Protein Interaction (PPI) Network

DEGs were utilized to carry out the study of PPIs using the STRING application [44].
The protein network file was then opened with Cytoscape software to analyze the core
module of the PPI network [11,45]. First (1) shell interactors represent the input proteins
that were found to be common between ExAtlas and Network Analyst analyses. No
second shell interactors were included in the analysis. The Network Analyzer function
of Cytoscape was then used to analyze the generated network. In the network, the nodes
represent the proteins, whereas the edges represent the evidence of interactions. The node
size is directly proportional to the betweenness centrality value of the particular protein
and the node color is based on the degree of connectivity of the different nodes with
other neighboring nodes. Nodes with no degree of connectivity were not represented
in the network. The difference in the color of nodes was due to their varying degree of
connectivity. The highest degree of connectivity was found to be 14, whereas the lowest
degree of connectivity was found to be 1.

Furthermore, scatterplots were constructed between the betweenness centrality and
closeness centrality of the different nodes and also the betweenness centrality and degree
values of the different nodes.

2.5. Pathway Enrichment Analyses

The BINGO application of Cytoscape was used to study the biological processes
involved with DEGs and functional enrichment analysis [46]. The Benjamini and Hochberg
FDR correction was employed to perform a hyper geometric test. For enrichment analyses,
the full GO database was selected as the ontology file. The network generated was then
analyzed using the network analyzer function of Cytoscape.

The overall workflow used in the study for the identification of potential biomarker
genes common to teratozoospermia and azoospermia is represented in Figure 1. It is
shown that the three analysis methods, i.e., ExAtlas, Network Analyst, and GEO2R were
used for the meta-analyses of the genes where overlapping outputs were obtained. These
overlapping outputs were then utilized to study the PPI network using the STRING
application and pathway enrichment analyses using the BINGO application (Figure 1).
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Meta-analysis using three different analyses, i.e., ExAtlas, Network Analyst, and GEO2R, resulted in
overlapping outputs which were then used to study protein-protein interaction (PPI) and protein
enrichment analysis using the STRING and BINGO application, respectively.

3. Results

Four microarray datasets named GSE6872, GSE6967, GSE145467, and GSE25518 in-
cluded in the present study (Table 1) altogether consisted of 77 samples, of which, 32 were
controls, and the remaining 45 were patient samples. In Figure 2, the distribution of data
representing these datasets has been shown with the help of a density plot, which visualizes
the distribution of data over a continuous interval or time period, and the peaks of the
density plot help to display where the values are concentrated over the interval. In our
case, all the curves had their peaks at the interval “0”, meaning that all the values have
been concentrated at “0” (Figure 2).
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Figure 2. Density plot of the four datasets for teratozoospermia and azoospermia. GSE145467, GSE25518,
GSE6872, and GSE6967 have been shown in pink, green, sky, and purple colors, respectively.

Figure S1 represents box plots constructed using Geo2R which shows the value plots
of these four datasets. The plots demonstrated that the log2 values are normalized across
all the samples of each dataset with the median line having more or less equal distribution
for each dataset.

3.1. Expression of Up- and Down-Regulated Genes (i.e., DEGs)

Meta-analyses of the selected microarray datasets using ExAtlas software revealed
205 significant genes using a random-effect model, of which, 133 were down-regulated
and the rest, 72, were up-regulated in the patients compared to healthy controls. Figure 3
represents clustered heatmaps of the four datasets comprising the expression of DEGs. The
datasets have been clustered into two groups, namely teratozoospermia and azoospermia,
depending upon the expression values of the DEGs. It is clear from Figure 3 that both
teratozoospermia and azoospermia follow a similar pattern of gene expression. The effect
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value in Figure 3 refers to the log ratio of gene expression change/difference compared to
the control or study-wide mean or median.
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Figure 3. Heatmap of the four datasets of teratozoospermia and azoospermia showing the expression
of significantly expressed differential genes as shown by R software using the complete heat package
of R. Effect value refers to the change of the log ratio of gene expression compared to the control
or study-wide mean or median. Teratozoospermia consisted of the datasets GSE6872 and GSE6967,
whereas azoospermia consisted of the datasets GSE145467 and GSE25518.

The expression pattern across different samples has been shown with the help of
Figure S2. Figure 4 represents the volcano plots of significant genes of the four datasets in-
cluded in our study. A volcano plot is a type of scatterplot that shows statistical significance
(p-value) versus the magnitude of change (fold change). It also allows for a quick visual
identification of genes with large fold changes that are also statistically significant. The red
dots in the figure represent significantly over-expressed genes, the green dots represent
significantly under-expressed genes, and the grey dots represent the genes that were not
differentially expressed (Figure 4).

Network Analyst analyses discovered 1812 DEGs, of which, a total of 118 genes have
been found to be common when the results of both ExAtlas and Network Analyst were
compared (Figure 5). The top 25 DEGs from the above-mentioned 118 genes have been
listed in Table 2 based on their fold change (FC) values along with their Entrez ID, log-ratio
combined, and FDR value. Surprisingly, among all the DEGs, the sperm autoantigenic
protein 17 (SPA17) gene has been found to possess the highest fold change value (9.471)
from the ExAtlas analysis. This can be considered an important observation since the same
gene has been found to have the highest fold change value in the case of Network Analyst
analyses. Hence, SPA17 is negatively expressed in teratozoospermia or azoospermia as it
remained down-regulated in the disease conditions as compared to the control. Among
these top 25 DEGs, 88% of genes (22) were down-regulated, as apparent from their log-ratio
combined value, while the rest 12% (3) were up-regulated (Table 2). Therefore, down-
regulated genes were highly expressed as compared to the up-regulated genes.
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are represented by green dots. Grey dots represent the genes that were not differentially expressed.
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Table 2. The top 25 up-regulated and down-regulated genes that have been found to be common to
teratozoospermia and azoospermia using ExAtlas and Network Analyst are listed along with their
Entrez ID, log-ratio combined, and fold change value (FDR).

Gene Symbol Entrez ID Log Ratio Combined Fold Change FDR

SPA17 Sperm autoantigenic protein 17 −0.9764 9.471 0.0366
TKTL1 Transketolase-like 1 −0.9288 8.488 1.01 × 10−7

DDX43 DEAD (Asp-Glu-Ala-Asp) box polypeptide 43 −0.8869 7.708 0.014
PRKAA1 Protein kinase, AMP-activated, α 1 catalytic subunit −0.8464 7.021 0.000101
SPATA22 Spermatogenesis associated 22 −0.8169 6.561 0.028

HNRNPM Heterogeneous nuclear ribonucleoprotein M −0.7491 5.612 4.31 × 10−6

TPTE Transmembrane phosphatase with tensin homology −0.7235 5.291 2.65 × 10−7

EIF4A2 Eukaryotic translation initiation factor 4A2 −0.7106 5.136 0.0251
UBE2D3 Ubiquitin-conjugating enzyme E2D 3 −0.6681 4.656 4.65 × 10−7

ADAMTS5 ADAM metallopeptidase with thrombospondin type 1
motif 5 0.6675 4.65 0.0446

OSBPL10 Oxysterol binding protein-like 10 −0.6591 4.561 0.001776
EFHC1 EF-hand domain (C-terminal) containing 1 −0.6357 4.322 0.009339

DLGAP5 Discs, large (Drosophila) homolog-associated protein 5 −0.6311 4.276 0.003758
PPP1R36 Protein phosphatase 1 regulatory subunit 36 −0.6296 4.262 0.004044

TAF5 TATA-box binding protein associated factor 5 −0.613 4.102 0.004949
GTF2A2 General transcription factor IIA 2 −0.6102 4.076 1.13 × 10−6

PARM1 Prostate androgen-regulated mucin-like protein 1 0.602 3.999 0.000384
REXO5 RNA exonuclease 5 −0.5984 3.967 0.008627
CDCA2 Cell division cycle associated 2 −0.5947 3.933 0.0338
CLDN5 Claudin 5 0.5839 3.836 0.0363
DGAT2 Diacylglycerol O-acyltransferase 2 −0.5793 3.796 0.000383
PLK4 Polo-like kinase 4 −0.5708 3.722 0.0456

RALGPS2 Ral GEF with PH domain and SH3 binding motif 2 −0.5698 3.714 7.50 × 10−6

KIF2C Kinesin family member 2C −0.56 3.631 3.96 × 10−6

RACGAP1 Rac GTPase activating protein 1 −0.5592 3.624 0.0247

FDR: False Discovery Rate.

Figure 6 shows the two-dimensional (2D) principal component analysis (PCA) of the
four datasets, i.e., GSE145467, GSE25518, GSE6872, and GSE6967, two of teratozoospermia
and two of azoospermia. This plot shows that similar expression profiles have clustered
together. It is considered one of the most famous dimension reduction methods where the
information of a complex dataset is converted into the principal component (PC), a few of
which can describe most of the variation in the original dataset.
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Figure 6. A two-dimensional (2D) PCA plot of the four datasets, two of teratozoospermia and two
of azoospermia. In this figure, the round shape represents the dataset GSE145467, the triangular
shape represents the dataset GSE25518, the square shape represents the dataset GSE6872, and the “+”
symbol represents the dataset GSE6967. The pink color shows the control samples while the sky color
shows the patient samples.
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All four GEO datasets were simultaneously analyzed using GEO2R. The expression
profiles contained genes that were significantly expressed in comparison to the control.
Following this, the expression profiles of all the datasets were overlapped using the Venn
diagram (Figure 7A). It has been observed that only 13 significantly over-expressed genes
(p < 0.05) were common in all four datasets. When these 13 over-expressed genes were
compared with the DEGs from ExAtlas and Network Analyst results (Figure 7B), only
two genes, CDC90B and CCDC91, were found to be common to all the three analyses,
i.e., ExAtlas, Network Analyst, and GEO2R. The two genes remain down-regulated in
the patients having teratozoospermia and azoospermia, as indicated by their negative log
ratio combined value. These results shifted our concern towards CCDC90B and CCDC91
genes and prompted our interest in finding the biological function of these as potential
biomarkers common to teratozoospermic and azoospermic men, especially in the field of
male reproductive health. With respect to Figure 7B, it should be noted that all the genes
that have been considered for comparative analyses among the three different software-
based approaches (ExAtlas, Network Analyst, and GEO2R) demonstrated a significant fold
change in the patient sample compared to the control.
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Figure 7. Venn diagrams showing the expression profiles of the study datasets. (A) The number of
common genes obtained by GEO2R from the two teratozoospermia and two azoospermia datasets as
visualized by a Venn diagram; 13 genes were found common to teratozoospermia and azoospermia
among the four datasets, (B) common genes of individual analyses of the four datasets of terato-
zoospermia and azoospermia by three different software programs, i.e., ExAtlas, Network Analyst,
and GEO2R. Only 2 genes were found common among the individual results obtained across the
three analyses, CCDC90B and CCDC91.

3.2. Protein-Protein Interaction (PPI) Network

Figure 8 represents the PPI network for DEGs. Among 118 first shell interactors or the
query proteins, 47 proteins with zero degrees of centrality were not considered during the
construction of the network, while the remaining 71 proteins were represented by nodes
with different colors. The difference in the color of the nodes is due to their varying degree
of connectivity. The blue-coloured nodes represent the protein with the highest degree of
connectivity, i.e., 14, while green-coloured nodes represent the proteins with the lowest
degree of connectivity, i.e., 1. The transition between the green and blue colors shows the
different values of degrees of connectivity between 1 and 14. The node size, on the other
hand, is directly proportional to the betweenness centrality value of the particular protein
(Figure 8).
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Figure 8. The Protein-Protein Interaction (PPI) network common to teratozoospermia and azoosper-
mia using the STRING application of Cytoscape. The node size is directly proportional to the
betweenness centrality value of the particular protein while the node color is based on the degree of
connectivity of the different nodes with other neighboring nodes.

A scatterplot was constructed between the betweenness centrality and closeness
centrality of the different nodes to visualize the proteins having different values. The
betweenness centrality of a node is a measure related to the number of shortest paths
the node is involved with and the closeness centrality of a node measures its average
farness to all other nodes. The scatterplot between the betweenness centrality and closeness
centrality showed that PPP1R36 has the highest value of all the proteins (Figure 9A).
Another scatterplot was also constructed between the betweenness centrality and degree
values of the different nodes where degree represents the number of edges linked to it. In
this plot, PPP1R36 has the highest value of betweenness centrality, with a degree value of
2, while the protein AURKA has the highest degree value with a betweenness centrality
value of 0.263733 (Figure 9B).

The 20 proteins listed in Table 3 are represented via PPIs without taking secondary
interactors into consideration. Table 3 shows the top 20 query nodes, arranged in descend-
ing order of their degree of centrality, along with their respective betweenness centrality,
closeness centrality, and the average shortest path length. The top 20 proteins in their
descending order of degree of connectivity are aurora kinase A (AURKA), thyroid hormone
receptor interactor 13 (TRIP13), polo-like kinase 4 (PLK4), disks large-associated protein
5 (DLGAP5), rac GTPase-activating protein 1 (RACGAP1), kinesin-like protein (KIF2C),
denticleless E3 ubiquitin protein ligase homolog (DTL), cell division cycle associated 2
(CDCA2), karyopherin α 2 (KPNA2), transforming acidic coiled-coil containing protein 3
(TACC3), meiotic nuclear divisions 1 (MND1), ATPase family AAA domain containing 2
(ATAD2), caveolin 1 (CAV1), dead-box helicase 3 X-linked (DDX3X), eukaryotic transla-
tion initiation factor 4A2 (EIF4A2), caspase 1 (CASP1), synaptonemal complex protein 3
(SYCP3), thyroid hormone receptor interactor 12 (TRIP12), testis expressed 15 (TEX15), and
serum deprivation-response protein (SDPR). AURKA has topped the list with the highest
degree of connectivity (14) followed by TRIP13 and PLK4 with their degree of centrality of
13 and 12, respectively. Centrality can be roughly estimated with the help of the degree of
nodes. It can act as an important parameter in a signaling network as it plays a significant
role in the estimation of the importance of a node/edge in the flow of information. It also
plays an important role in the exploration of drug targets. Among the top three genes
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having the highest degrees of centrality, TRIP13 (0.383003) has a comparatively higher
betweenness centrality value than the remaining two, i.e., AURKA (0.268733) and PLK4
(0.053786). The information flow in a network system can be measured with the help
of betweenness centrality. Nodes with a high betweenness centrality can influence the
information flow in a biological network which might be helpful as they can act as targets
for drug discovery and, hence, are very crucial for network analysis. TRIP13 (0.390977)
has the highest value of closeness centrality followed by AURKA (0.379562) and PLK4
(0.348993), respectively. Closeness centrality is another measure that can estimate the rate
of flow of information from a given node to another node. On the other hand, TRIP13
(2.557692) has the shortest-path length followed by AURKA (2.634615) and PLK4 (2.865385),
respectively. The average shortest-path length measures the accuracy of the information
or mass transport occurring on a network. The top 20 interactions from a protein-protein
analysis are listed in Table 3.
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Figure 9. Scatterplots constructed to visualize the position of proteins in the plot with different values
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and degree of values.

Table 3. List of top 20 interactions common to teratozoospermia and azoospermia from a protein-
protein analysis using the STRING application of Cytoscape. The genes are arranged in descending
order of their degree of centrality, along with their respective average shortest path length, between-
ness centrality, closeness centrality, and the clustering coefficient.

Name Average Shortest
Path Length

Betweenness
Centrality

Closeness
Centrality

Clustering
Coefficient Degree

AURKA 2.634615 0.268733 0.379562 0.538462 14
TRIP13 2.557692 0.383003 0.390977 0.615385 13
PLK4 2.865385 0.053786 0.348993 0.621212 12

DLGAP5 2.846154 0.078277 0.351351 0.727273 12
RACGAP1 2.884615 0.002863 0.346667 0.872727 11

KIF2C 2.884615 0.002863 0.346667 0.872727 11
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Table 3. Cont.

Name Average Shortest
Path Length

Betweenness
Centrality

Closeness
Centrality

Clustering
Coefficient Degree

DTL 2.807692 0.11128 0.356164 0.745455 11
CDCA2 2.903846 0.021237 0.344371 0.781818 11
KPNA2 2.942308 0.019194 0.339869 0.777778 10
TACC3 3.038462 0.038629 0.329114 0.75 9
MND1 2.961538 1.68 × 10−4 0.337662 0.972222 9
ATAD2 2.980769 0.038462 0.335484 0.75 8
CAV1 3.480769 0.248291 0.287293 0.066667 6

DDX3X 3.211538 0.180979 0.311377 0.2 6
EIF4A2 3.076923 0.194051 0.325 0.2 5
CASP1 4.019231 0.147059 0.248804 0.166667 4
SYCP3 3.346154 0.180241 0.298851 0.166667 4
TRIP12 3.5 0.090196 0.285714 0.166667 4
TEX15 4.230769 0.076169 0.236364 0.166667 4
SDPR 4.211538 0.03449 0.237443 0.333333 3

3.3. Pathway Enrichment Analyses

Gene Ontology (GO) analysis was performed to find out the unique biological sig-
nificance based on DEGs. In the GO functional enrichment analyses using the BINGO
application of Cytoscape (Figure 10), the yellow-coloured nodes have been significantly
over-represented while the white-coloured ones are supportive in function. The size of
a node is directly proportional to the number of query genes that are annotated to the
corresponding GO category.
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Figure 10. The enrichment network of the shared differentially expressed genes (DEGs) based on the
biological process network of DEGs common to teratozoospermia and azoospermia patients using
the BINGO application of Cytoscape. Large nodes represent more genes involved and the size of
the node is proportional to the number of targets in the GO category. Yellow-coloured nodes are
significantly over-represented while the white-coloured nodes are supportive in function.
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Table 4 shows the top 12 GO categories based on their respective node sizes which
are significantly over-represented in the present study. Among all these significantly over-
represented groups, the highest node size has been recorded for cellular processes followed
by organelle organization. Neighborhood connectivity has been found to be highest for the
microtubule cytoskeleton and centrosome, followed by the cell cycle process.

Table 4. List of top 12 significantly over-represented GO categories derived from the BINGO analysis
output. The list has been prepared on the basis of ascending order of the adjusted p-values.

GO ID Gene Names Description
Average

Shortest Path
Length

Betweenness
Centrality

Closeness
Centrality

Neighborhood
Connectivity Node Size No. of

Genes
Adjusted
p-Value

7049

STEAP3, CDCA2, CUL2, SIAH1,
TUBE1, MND1, TEX15, AURKA,

RACGAP1, SPIN1, TACC3, KIF2C,
TRIP13, SYCP3, KPNA2, and

DLGAP5

Cell cycle 2.25 0.176768 0.444444 3 8 16 1.57 × 10−2

22403
CDCA2, CUL2, TACC3, KIF2C,

MND1, TEX15, TRIP13, SYCP3,
KPNA2, DLGAP5, and AURKA

Cell cycle
phase 2.333333 0.320707 0.428571 2.666667 6.63325 11 1.57 × 10−2

22402
CDCA2, CUL2, TUBE1, MND1,

TEX15, AURKA, RACGAP1,
TACC3, KIF2C, TRIP13, SYCP3,

KPNA2, and DLGAP5

Cell cycle
process 2.083333 0.34596 0.48 3.333333 7.211103 13 1.57 × 10−2

279
CDCA2, TACC3, KIF2C, MND1,
TEX15, TRIP13, SYCP3, KPNA2,

DLGAP5, and AURKA
M phase 2.916667 0.017677 0.342857 3 6.324555 10 1.57 × 10−2

15630
PLK4, RANBP9, TUBE1, AURKA,
RACGAP1, CSPP1, DLC1, VPS41,
SPIN1, TACC3, KIF2C, DTL, and

DLGAP5

Microtubule
cytoskeleton 2.85 0.014912 0.350877 3.666667 7.211103 13 1.57 × 10−2

9987

EIF4A2, STEAP3, SPON1, USPL1,
HHIP, UBE2D3, STON1, AREG,

BAIAP2L1, CSRP2, TOP1MT,
SPIN1, CASP1, QSOX1, KPNA2,
SPA17, STK32B, DLGAP5, VAV3,
TOR3A, TKTL1, DGAT2, PTGIS,

METTL3, VPS13A, ATP1B2,
TEX15, PASK, PIAS2,

CLDN5CCDC80, HAND2, NUP50,
ADPRH, RHOJ, FAR1, KIF2C,

RPP25, DTL, GTF2A2, PRKAA1,
CDCA2, CUL2, GMPS, TPTE,
CYP17A1, AURKA, AP3M2,
WNT6, PPP1R2, RACGAP1,

STK36, EPB41L3, PLEK2, PLK4,
XRCC6, CAV1, SIAH1, FMO1,

RANBP9, TUBE1, MND1,
SNAP91, HNRNPM, DLC1,

MGAT4A, VPS41, TACC3, TRIP12,
TAF5, TRIP13, SYCP3, and EIF4G3

Cellular
process 2.083333 0.5 0.48 2.75 17.08801 73 3.59 × 10−2

5813 PLK4, TACC3, TUBE1, DTL,
DLGAP5, and AURKA Centrosome 2.6 0.078421 0.384615 3.666667 4.898979 6 4.92 × 10−2

31616 DLGAP5 and AURKA Spindle pole
centrosome 3.25 0.005263 0.307692 3 2.828427 2 4.92 × 10−2

6996

VAV3, XRCC6, CDCA2, CAV1,
RANBP9, TUBE1, TEX15, SNAP91,

AURKA, RACGAP1, DLC1,
EPB41L3, RHOJ, TACC3, PLEK2,

KIF2C, TAF5, SYCP3, and
DLGAP5

Organelle
organization 2.666667 0.234848 0.375 2.333333 8.717798 19 4.92 × 10−2

7010
RACGAP1, DLC1, EPB41L3, RHOJ,
TACC3, RANBP9, PLEK2, KIF2C,

TUBE1, and AURKA
Cytoskeleton
organization 3.583333 0 0.27907 3 6.324555 10 4.92 × 10−2

7140 TEX15, TRIP13, and SYCP3 Male meiosis 3.666667 0 0.272727 3 3.464102 3 4.92 × 10−2

8022 XRCC6, RACGAP1, CAV1, DLC1,
SIAH1, and EFHC1

Protein
C-terminus

binding
2 0 0.5 2 4.898979486 3 4.92 × 10−2

4. Discussion

Male infertility is a reproductive condition with complex etiopathology affecting more
than 20 million men worldwide [2–4]. In pathozoospermic men, semen abnormalities
associated with impaired spermatogenesis manifest as teratozoospermia, asthenozoosper-
mia, oligozoospermia, and azoospermia [47,48]. Azoospermia represents one of the most
severe forms of infertility with as high as a 25% risk of genetic disorders [49]. The classi-
cal concept of the percentage of morphologically normal spermatozoa below the World
Health Organization (WHO)-stipulated lower reference limit [50] also needs to be revisited
based on the proposition to include abnormalities in spermatozoa ultrastructure. These
spermatozoa abnormalities at the molecular level may explain the underlying mechanism
of teratozoospermia, another important male infertility type [51,52]. Several studies have
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been carried out in recent times for the identification of potential genetic markers in the
case of these two spermatozoa abnormalities [11,53,54]. However, a convincing molecular
marker common to both teratozoospermia and azoospermia with significant prognostic
value has not yet been identified. The ambiguity in identifying the exact biomarkers of
these disorders is also attributed to the lack of potential drug targets to improve these
infertility conditions.

In an earlier study by Han et al., teratozoospermia datasets were intensively screened
to find three potential biomarkers, namely, AGBL4, FAM172A, and RUNDC3B, in the
teratozoospermia patient group [11], while another study identified differentiated genes
in the case of patients suffering from azoospermia [24]. In this study, most of the datasets
shared 25 DEGs, suggesting that they may play a role in the pathophysiology of male
infertility. A total of 8 genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1,
and RIMBP3) were found to be engaged in the overall spermatogenic processes, or at
specific stages of spermatogenesis out of the 25 DEGs. They hypothesized that these
genes have the potential to be employed as biomarkers for the early diagnosis of non-
obstructive azoospermia. However, the potential markers of a single disease cannot unveil
the mystery behind the failure of the overall spermatogenic process. Therefore, we made
this pioneering attempt to use a rigorous approach to discover differentially expressed genes
that are common to both teratozoospermia and azoospermia, with the goal of uncovering
certain markers that may play a role in gametogenesis and spermatozoa development and
which can be utilized for further downstream processes of identification and subsequent
drug discovery.

In the present study, we integrated four datasets, i.e., two for teratozoospermia and
two for azoospermia, and successfully identified two genes, CCDC90B and CCDC91, which
are commonly affected in both teratozoospermia and azoospermia. Thus, CCDC90B and
CCDC91 might be suitable as common candidate biomarkers in the diagnosis and/or
treatment of teratozoospermic as well as azoospermic men.

The genetic basis of pathospermia (including teratozoospermia and azoospermia) has
been investigated particularly in relation to the expression of miRNAs [6]. A large num-
ber of genes have been found to be associated with pathozoospermia, such as the decrease
in spermatozoa concentration; however, fewer genes were found to be associated with ab-
normalities in spermatozoa morphology, i.e., teratozoospermia [47]. Recent studies on the
genetics of teratozoospermia have identified recurrent mutations in three specific phenotypes,
macrozoospermia, globozoospermia, and multiple morphological abnormalities of the flagella
(MMAF) [47]. Several teratozoospermia-associated gene mutations, including F-box only
protein 43 (FBXO43) [55], armadillo repeat-containing protein 2 (ARMC2) [56], SEPTIN12 [57],
and AGBL carboxypeptidase 5 (AGBL5) [58], have been identified by measuring exonic mu-
tations in blood samples using whole exome sequencing technology. Numerous genes that
contribute to various sperm abnormalities have recently been discovered through improve-
ments in sequencing methods, particularly in whole exome sequencing (WES). A homozygous
loss-of-function mutation in the zinc finger MYND-type containing 15 (ZMYND15) gene was
found in recent research employing WES. It has been demonstrated that the lack of ZMYND15
produces nonobstructive azoospermia and severe oligozoospermia [59]; additionally, another
research suggests that it may potentially be linked to teratozoospermia [60]. ZMYND15 has
also been described as a switch for haploid gene expression. Proteins such as protein 4.1 [61],
spermatogenesis associated 46 (SPATA46) [62], cysteine-rich secretory protein 2 (CRISP2) [63],
spermatogenesis associated 6 (SPATA6) [64], and several other genes are believed to play
significant roles in the process of spermatogenesis under normal conditions and might act as
molecular markers for the clinical diagnosis of pathospermia. The abnormal expression of
testicular genes and the loss or mutation of the Y chromosome during spermatogenesis may
lead to abnormal sperm morphology, mainly in the expressions of AURKC, SPATA16, Dpy-19
like 2 (DPY19L2), dynein axonemal heavy chain 1 (DNAH1), etc. [65] According to Wang et al.,
SEPT14 is predominantly expressed in the testes and neurons [23]. It is the last gene to be
identified in the SEPTIN family. Two mutations, A123T and I333T, have been found to be
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associated with teratozoospermic patients after characterizing the genetic effects of SEPT14 in
cases with abnormal sperm parameters [23]. Spermatozoa with SEPT14 mutations showed a
disruption in the ultrastructure of sperm heads as well as DNA damage. Moreover, the muta-
tion also showed a decrease in the polymerization ability of the spermatozoa [23]. Deleted in
azoospermia (DAZ) and testis-specific protein Y-linked 1 (TSPY1) genes have been found to be
expressed at the pre-meiotic stage, whereas transition protein 1 (TNP1), protamine 2 (PRM2),
synaptojanin 2 (SYNJ2), and zona pellucida binding protein (ZPBP) genes are expressed par-
ticularly at the post-meiotic stage [66]. In addition, eight genes, named the testicular haploid
expressed gene (THEG), spermatogenesis associated 20 (SPATA20), rhophilin associated tail
protein 1 like (ROPN1L), glutathione transferase 1 (GSTF1), testis-specific serine kinase 1B
(TSSK1B), calcium-binding protein, spermatid associated 1 (CABS1), adenosine deaminase
domain containing 1 (ADAD1), and RIMS-binding protein 3 (RIMBP3), have been found to
be either involved in overall spermatogenic processes or at specific phases of spermatogene-
sis [24]. In azoospermic conditions, the correlation of the inflammation-associated genes with
those essential for spermatogenesis revealed that the genes overlapping in inflammation and
spermatogenesis might be used as potential biomarkers for azoospermia [67,68]. Thus, the
present study, in relation to the individual previous studies, aims to identify SPA17, PPP1R36,
AURKA, TRIP13, PLK4, CCDC90B, and CCDC91 genes as important biomarkers of both
teratozoospermia- and azoospermia-associated infertility in men. However, CCDC90B and
CCDC91 genes were identified as the most notable markers and they might play significant
roles in the diagnosis and treatment of these two infertility conditions, paving the way to
targeted therapy to cure these forms of male infertility.

There are various gene families that are located on the Y chromosome which have been
linked to spermatogenic failure and can lead to both teratozoospermia and azoospermia.
However, the connection between the defects in these genes and the ensuing fertility
problems are not well understood. Studies in mouse models show that a large number of
genes involved in both the repair and monitoring of DNA damage have distinct impacts
on gametogenesis during the meiotic transition [69].

Meiotic germ cell loss adds considerably to the relatively low efficiency of human
spermatogenesis, according to the findings of an in-depth study on the efficacy of sper-
matogenesis in humans [70,71]. Investigating the expression of certain genes in humans
that are involved in meiotic chromatin dynamics has been proven to be an interesting
endeavor. For example, the presence of the mismatch repair gene, muts protein homolog
4 (MSH4), in human tissues suggests that the encoded protein may play a part in human
meiosis [72]. In eukaryotic cells, cdc2p (a cyclin-dependent kinase), or one of its orthologs,
acts as a master regulator of both the mitotic and meiotic divisions [73]. The puf-8 gene
(a pumilio-related gene) is responsible for controlling RNA stabilization and translation
and encodes a ‘pumilio-like RNA binding protein’. In addition to the other pumilio and
FBF (PUF) proteins, the PUF-8 protein is necessary for the maintenance of viable germ
cells throughout the development process [74]. Additionally, it performs a non-redundant,
partly penetrant function in the testes. Primary spermatocytes that do not express PUF-8
are able to complete the prophase of meiosis I; however, they then leave meiosis, re-enter
mitosis, and de-differentiate, producing tumorous germ cells. This finding suggests that
PUF-8 is essential for primary spermatocytes to continue progressing along the spermatoge-
nesis pathway after completing meiosis [75]. It has also been explained that an aberrant Y
material translocation, including the sex determination region (SRY), to the X chromosome
may occur during paternal meiosis. This results in the formation of the 46,XX male chromo-
somal complement. The presence of the SRY gene does not prevent testicular differentiation,
however, spermatogenesis is absent since the long arm of the Y chromosome is missing [76].
These males experience normal sexual development, having no structural abnormalities in
external genitalia, but they are more likely to suffer cryptorchidism and hypospadias.

The properties of the relevant chromosomes and the breakpoint sites have a major role
in predicting the risk of meiotic imbalance. The typical frequency of paternally generated
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translocation imbalance at prenatal diagnosis is 12%, and many of these imbalances result
in fetal mortality [77,78].

More recently, Han et al. identified the AGBL4 gene which remains significantly up-
regulated in the spermatozoa of teratozoospermic patients. In their study, the two datasets
taken into consideration were GSE6872 and GSE6967. Three common genes were found
to be differentially expressed and the expression changes of these differentially expressed
genes were further validated using another dataset named GSE6968 [11]. The AGBL4
gene encodes an ATP/GTP binding protein [79] which is a metallocarboxypeptidase that
principally mediates the deglutamylation of target proteins, catalyzes the deglutamylation
of post-translational polyglutamate side chains in proteins (e.g., tubulin), and removes
polyglutamate from the carboxyl terminus of target proteins (e.g., MYLK) [80,81]. To be the
best of our knowledge, no study has so far reported the association of AGBL4 with male
infertility [82], although results from the differential changes of AGBL4 gene expression
proved the feasibility of this gene as a diagnostic marker of clinical teratozoospermia [11].
In contrast to the findings of Han et al. [11], in this study, seven genes have been identified
as biomarkers of teratozoospermia and azoospermia, SPA17, PPP1R36, AURKA, TRIP13,
PLK4, CCDC90B, and CCDC91. However, the CCDC90B and CCDC91 genes emerged
as the most prominent markers common to both teratozoospermia and azoospermia as
confirmed by all three analyses, i.e., Network Analyst, ExAtlas, and GEO2R. These genes
remained down-regulated in the patients having teratozoospermia or azoospermia as their
log ratios combined value was found to be negative after the analysis. Since these genes
remained down-regulated, the production of their products, i.e., proteins, would be lower
in such patients.

It is quite apparent from Figure 3 that both teratozoospermia and azoospermia share
a similar expression patterns of genes, thereby providing a clear idea of some common
biomarkers for the two diseases. Figure 3 also indicates that there exists a clear differen-
tiation between the patient and control groups of each dataset in terms of the expression
profiles of the genes. The probability that those above-mentioned 205 genes could be
considered as significant biomarkers for both teratozoospermia and azoospermia is partly
supported by this observation. It is obvious from Table 2 that the SPA17 gene has the highest
fold change value from both the ExAtlas and Network Analyst, which makes the gene a
strong candidate for a potential common biomarker for both male infertility conditions
teratozoospermia and azoospermia. The SPA17gene encodes a protein present at the cell
surface and has an N-terminus with a sequence similarity to human cAMP-dependent
protein kinase A (PKA) type II α regulatory subunit (RIIa), while the C-terminus has an IQ
calmodulin-binding motif. The middle portion of the protein has carbohydrate-binding mo-
tifs and plays a significant role in cell-cell adhesion. The protein was initially characterized
by its involvement in the binding of spermatozoa to the zona pellucida of the oocyte [83].
Any mutations/changes in the gene would prevent the association of spermatozoa with
the oocyte, resulting in the failure of fertilization and ultimately leading to infertility. More
recent studies also show its involvement in additional cell-cell adhesion functions such as
immune cell migration and metastasis [84]. Additionally, it plays an important role in cell
regulation by participating in signaling pathways through its calmodulin-binding site at
the C-terminal [85]. Since SPA17 is down-regulated, as evident from its log ratio combined
value, its expression would decrease in teratozoospermic and azoospermic patients. In
addition, the positive fold change value of 9.471 shows that its negative expression increases
9.471 times. Moreover, SPA17 is involved in the cellular process pathway, as shown in
Table 4, so any change in its expression will lead to an alteration of the cellular process as
well. It is evident from Figure 9A that the PPP1R36 gene has the highest value of between-
ness and closeness centrality, making it an important biomarker for both teratozoospermia
and azoospermia. PPP1R36 is highly expressed in testes compared to other tissues. It
is expressed during gonadal development, especially in testes during spermatogenesis.
PPP1R36 is not only expressed in the developing testes during spermatogenesis but is also
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present in the acrosome of mature spermatozoa, indicating a role of PPP1R36 in sperm
activity, probably through autophagy [86].

In the case of PPI analyses, the top three genes participating in the network were
AURKA, TRIP13, and PLK4, based on their degree of centrality. The protein encoded by
the AURKA gene is a cell cycle-regulated kinase that is involved in microtubule forma-
tion and/or stabilization at the spindle pole during chromosome segregation [87]. The
encoded protein is found at the centrosome in interphase cells and the spindle poles in
mitosis. This gene might play an important role in tumor development and progression [88].
TRIP13 encodes a protein named thyroid receptor-interacting protein 13 which plays a
key role in chromosome recombination and chromosome structure development during
meiosis [89]. It is also required at early steps in the meiotic recombination that lead to
non-crossovers pathways. Moreover, the protein also aids in the efficient completion of
homologous synapsis by influencing crossover distribution along the chromosomes, affect-
ing both crossovers and non-crossovers pathways [90]. More importantly, the protein is
required for the efficient synapsis of the sex chromosomes and sex body formation [91]. The
PLK4 gene encodes a member of the polo family of serine/threonine protein kinases [92].
The protein localizes to centrioles, complex microtubule-based structures found in centro-
somes, and regulates centriole duplication during the cell cycle [93]. CCDC90B (Coiled-Coil
Domain Containing 90B) is a protein-coding gene. Diseases associated with CCDC90B
include oculoauricular syndrome and osteochondrosis [94]. CCDC91 (Coiled-Coil Domain
Containing 91), a protein-coding gene, is associated with diseases such as ossification
of the posterior longitudinal ligament of the spine and diffuse idiopathic skeletal hy-
perostosis (https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCDC91 accessed on
2 January 2022).

5. Conclusions

In conclusion, the present study has identified 118 DEGs common to the four profile
datasets (two belonging to both of teratozoospermia and azoospermia) based on ExAtlas
and Network Analyst results. A number of DEGs have been found to be common to
both teratozoospermia and azoospermia and may have a diagnostic role in both clinical
conditions that may lead to infertility. Among all the DEGs, the significant genes are SPA17,
CCDC90B, and CCDC91. The 118 DEGs, after comparison with GEO2R software, showed
only two genes, CCDC90B and CCDC91, to be common in the three analyses, i.e., ExAtlas,
Network Analyst, and GEO2R. Therefore, it can be said that CCDC90B and CCDC91 genes
could be the potential common biomarker candidates in the pathospermic conditions of
both teratozoospermia and azoospermia.

The significantly enriched pathways based on the above-mentioned genes are mainly
focused on cell cycle and development processes. These observations could significantly
improve our understanding of the causes and underlying molecular mechanisms in ter-
atozoospermia and azoospermia. However, further in vivo analysis of these markers is
needed to prove their potentiality and establish their effectiveness as potential drug targets.
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