
Mendel University in Brno

Open Source Tools for Text Processing
Study text

Jiří Rybička
Mendel University in Brno

Project: Innovative Open Source Courses
for Computer Science Curriculum

24. 6. 2022

Reviewer: Doc. RNDr. Ján Buša, CSc., Technical University of Košice, Slovakia
Project: Innovative Open Source Courses for Computer Science Curriculum ©
Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
ISBN 978-80-7509-880-1 (online ; pdf)
DOI https://doi.org/10.11118/978-80-7509-880-1

Open Access. This book is licensed under the terms of the Creative Commons
Attribution-ShareAlike 4.0 International License, CC BY-SA 4.0
(https://creativecommons.org/licenses/by-sa/4.0/)

Project: Innovative Open Source Courses for Computer Science Curriculum

This material teaching was written as one of the outputs of the project “Innovative Open
Source Courses for Computer Science Curriculum”, funded by the Erasmus+ grant no.
2019-1-PL01-KA203-065564. The project is coordinated by West Pomeranian University
of Technology in Szczecin (Poland) and is implemented in partnership with Mendel Uni-
versity in Brno (Czech Republic) and University of Žilina (Slovak Republic). The project
implementation timeline is September 2019 to December 2022.

Project information
Project was implemented under the Erasmus+.
Project name: “Innovative Open Source courses for Computer Science curriculum”
Project nr: 2019-1-PL01-KA203-065564
Key Action: KA2 – Cooperation for innovation and the exchange of good practices
Action Type: KA203 – Strategic Partnerships for higher education

Consortium
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
MENDELOVA UNIVERZITA V BRNĚ
ŽILINSKÁ UNIVERZITA V ŽILINĚ

Erasmus+ Disclaimer
This project has been funded with support from the European Commission. This publication reflects the views
only of the author, and the Commission cannot be held responsible for any use which may be made of the
information contained therein.

Copyright Notice
This content was created by the IOSCS consortium: 2019–2022. The content is Copyrighted and distributed
under Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

4

Preface

This book contains study material for the course Open source word processing tools in-
tended for education at the university level. It is the result of a project dealing with the
application of open source tools in teaching. It shows that even for demanding pub-
lications there is no need to use expensive licensed software, and it is even possible to
efficiently create documents that are difficult to implement in other environments or with
a high proportion of manual work.

The text emphasizes an efficient approach to document processing – the wide use
of so-called structural (semantic) markup that allow separating the document from its
visual form, thus achieving greater flexibility and reusability of the processed material.

The technological tool is the Open Source system XƎLATEX widely used in the scien-
tific and professional field, in education and in selected publishing houses. It is a principle
whose mastery brings significant advantages to users when processing professional texts,
such as various seminar and final theses, articles, proceedings and other publications.

Together with the individual elements of the XƎLATEX system, the book also contains
an explanation of the necessary typographical principles and rules applied in common
types of documents. It thus brings a complete view of document processing.

Acknowledgments

At this point, I would like to express my gratitude to doc. RNDr. Ján Buša, CSc., for many
valuable comments and suggestions on this text.

5

Contents

1 Introduction 8

2 Document and method of its processing 9
2.1 Principle of document elements . 10
2.2 Identification of elements in the document 10
2.3 Representation of elements – typographic design 11
2.4 Representation of elements – implementation of typographic design . . . 12

2.4.1 Structural markup . 12
2.4.2 Software . 12

2.5 Technological principle of systems based on the TEX 13
2.5.1 Basic principle of TEX . 13
2.5.2 Extensions, distributions . 14
2.5.3 Working with the system, source text, commands 15

2.6 Command types, groups, environments 16
2.7 Custom definition . 17
2.8 Technological principle based on systems in office packages 18

3 Basic document parameters 19
3.1 Book font – types . 19
3.2 Body font and its parameters . 19
3.3 Document in printed or electronic form 22

4 National environment and special characters 24
4.1 Input text encoding . 24
4.2 Locale setting . 24
4.3 Hyphenation algorithm and its settings 25
4.4 Special characters and their solutions . 26

5 Paragraph typesetting, algorithms, parameters 29
5.1 Typographic measuring systems, lengths, length registers 29

5.1.1 Paragraph . 30
5.2 Body text typesetting parameters . 30
5.3 Other paragraph document elements . 34

6 Mixed typesetting 36
6.1 Use of additional typeface . 36
6.2 Emphasizing . 36
6.3 Technology – colors, models, definitions 39

7 Document division 41
7.1 Heading systems . 41
7.2 Initials . 42
7.3 Table of contents creation . 42
7.4 Technology – numbering, counters and references 44

8 Pages 46
8.1 Page elements . 46
8.2 Relationship between paragraph and page break 46
8.3 Page headers and footers . 46
8.4 Footnotes . 47
8.5 Marginalia . 48
8.6 Page and paper . 49
8.7 Special pages design . 50

9 Mathematical and similar expressions 52
9.1 Elements of expressions . 52
9.2 Inserting of expressions into the document, references 57

10 Tables 59
10.1 Table types . 59
10.2 Ways to align tabular data . 59
10.3 Inserting tables into document . 62

11 Image material and graphics 64
11.1 Types of images and their sources . 64
11.2 Graphic elements in the document . 69

11.2.1 Special fonts characters . 69
11.2.2 Typesetting elements and operations with them 69
11.2.3 Typesetting principle and TEX modes 70
11.2.4 Boxes . 71
11.2.5 Affecting the base typesetting method 75
11.2.6 Graphics operations . 76

11.3 Inserting images in a document . 77
11.4 Creating pictures in the system – environment picture 77

12 Document as a whole 81
12.1 Pages arrangement . 81

12.1.1 One-sided or two-sided? . 81
12.1.2 Document arrangement . 81

12.2 Moving of information . 84
12.2.1 Fragile and robust commands . 84
12.2.2 Index . 84
12.2.3 References – bibliographic citations 86

12.3 Production of a physical document . 89
12.3.1 Imposition pages for printing . 89
12.3.2 Overview of bookbindings . 91

6

13 References for further study 94

A Overview of elements used in mathematical environments 96

B How to install and use a working distribution 99
B.1 User Support . 99

C For inspiration – how this publication is typeset 101

7

8 Chapter 1

Introduction

Computer word processing has undoubtedly been for a long time one of the most fre-
quented applications. Best practices and rules can save a lot of time and resources in
preparing and reusing texts to the vast majority users. The way to this goal is to get ac-
quainted with two areas – typography (defines the general requirements for the appear-
ance of the document) and the relevant computer applications (implements typographic
requirements). Although it is a mass one application, in our experience, relatively few
users are aware on the effective preparation and further processing of documents of var-
ious types and purposes.

This text aims to present the two basic areas needed for quality and efficient word
processing: typography and selected technology. In each chapter, therefore, we en-
counter a section stating the problem in typographic level and this will be followed by
an explanation of the technical elements and tools of the given system. The typographic
part is more general and applicable with any technology, but the implementation of the
document is only dependent on selected tools and their possibilities. In this text we deal
with technology based on the typographic system TEX, which is freely available and is
available on all operating platforms. In addition, the link to fundamentally different tech-
nology of word processing by the respective programs available as part of office packages.

Mastering any program system involves a certain complexity especially the need for
systematic acquaintance with the basic principles of activity and with all the essential
services that the program offers. It also assumes that a certain time investment, which
starts to pay off after a certain time. If it will show in the meantime that the services of
the program do not meet the needs of the user, it is possible state that this investment
was not good.

In the case of systems based on the TEX principle, the situation is similar, but our
experience suggests that although the time investment seems somewhat larger than in
the case of other programs of a similar class, its return tends to be substantially larger.
The TEX system is so specific that it does not have significant competition even today. In
this respect, it brings unique effects.

This brief text dealing with the TEX extension of XƎLATEX cannot contain everything
that would be appropriate for the practice to know. However, it forms an introduction.
The basics can easily be continued in further study, both from the literature mentioned in
the final list, as well as partly from electronic sources on the Internet or documentation
texts in the distribution used.

Chapter 2 9

Document and method of its processing

The term document will be used to define the logical and physical unity of content and
forms. From this point of view, the document is, for example, a business letter, invoice,
business trip report, annual report, but also a spreadsheet, because it also contains infor-
mation for formatting of the content (numbers and expressions), ie form.

In general, we need to manipulate both in any document processing parts – both
in content and form. We will not discuss the content (with some exceptions), it is the
subject of other areas, we focus mainly on form and its efficient processing.

Work on the document can be divided (also according to long-term historical expe-
rience) between three roles:

• Author – the result of the author’s role is the content part of a document. The
author is an expert who decides what will be in the document, what is important,
how the text will be formulated and what information will be presented in tables,
mathematical expressions and figures or diagrams.

• Designer – the role of the designer presupposes the design of the document, ac-
cording to the intended purpose (printed document, electronic document or part
of a proceedings or book, part of another larger unit). The designer is an expert
in the field of typography or graphic design, decides what parameters of elements
will be optimal for a given document, so that the reader perceives and processes it
as best as possible.

• Typesetter – the role of the typesetter represents the technical implementation of
everything what the author and editor created, using appropriate technology. The
typesetter is a technical expert – he controls the relevant software, he can apply
suitable functions to the document so that its implementation and any subsequent
modification is as effective as possible.

These three roles can be played by one physical person, which is very often the
today’s case. In earlier times, when documents were created only in professional facto-
ries, it was strictly different people who were specialized in their share of the document,
which ensured a certain standard quality of the final work. Nowadays, it does not re-
quire extensive knowledge of the technology of the so-called hot typesetting from metal
letters, the computer all technical elements implement today, but there is still a need to
deal with typographic rules and the technical possibilities that we have at our disposal.
That is the aim of this text.

Although we take ourselves into all three of these roles, we should always be very
aware of which of them we are currently in when processing a document, and we should
not combine their activities together. Concentrating on one of these roles always enables
its quality application, and thus the possibility of obtaining an optimal result. It is also

possible to pass one of these roles to an expert, thus avoiding a document that is imperfect
or even unacceptable.

2.1 Principle of document elements
Each document has its own logical structure. We can divide it into sections to which a
certain meaning can be assigned (ordinary paragraph, title, footnote) – so-called docu-
ment elements. This classification is very much related to the content of the document,
so only the author of the document can determine it without errors. For example, the
author determines (as already mentioned) where each paragraph ends or which term is
important and which phrase has what meaning. Of course, in some specific simple cases,
it is possible to arrange for the elements to be determined by the document designer
(or editor, proofreader, typesetter), but this is an unreliable and sometimes dangerous
method, as it can confuse meanings.

In addition to its content, each document element can also have a function within the
document. Most often, it is a visual function so that the reader can clearly distinguish
it from other elements, but this does not have to end there: elements can appear, for
example, in the table of content of the document, in page headings, in registers or can be
processed by external programs, inserted into various reports, databases, etc.

2.2 Identification of elements in the document
An irreplaceable function of the author of the document content is (as already derived)
also the determination of the document elements, which can be done in different ways,
especially depending on who represents the other two roles in editing the document.

Inserting information about the type of document element is most often done using
a structural markup (see below). However, it is also possible to use any other method of
marking (for example, in pencil on the printout of the text content of the document).

What elements are typical? Almost every document will have a paragraph of the
body text as one of the elements. In the same way, we can often see other elements:
headings of various categories, enumerations and lists, footnotes, table fields, captions
of figures and tables, mathematical expressions, quotes, etc. It would seem that on this
is nothing new – after all, most different software systems have their solution available
from the usual menus for the mentioned documentary elements. But we will go further:
the listed general elements usually need to be supplemented by other, specific for the
given document, for which general offers are no longer enough.

An example is a business letter. Its typical elements are shown in tab. 2.1.

Tab. 2.1: Elements of a business letter

Element name Description Note

Address recipient’s address contains 4 parts – lines of address
Appeal appeal data contains 3 parts – id, place, handles
Subject standard letter element single line text
Salutation salutation of recipient it can have a variant for men and for a women
Text one paragraph of letter text can be repeated as needed
Greeting final greeting contains the person’s name and function
Attachment reference to attachments it need not be specified if there are no attachments

10

As you may argue, this table is not the only possible solution to the letter. You can
certainly add more elements, or, conversely, remove or change the meanings of existing
ones. This is not important at the moment, but rather indicates the need to determine
these elements according to the immediate need and not to rely on someone (or any
software) to do it for us.

2.3 Representation of elements – typographic design
The second step is to change the role from author to designer. Now we have to assign
to the identified elements their appearance and possibly also functions within the doc-
ument. We will start from the previous table and add a suitable form while respecting
the typographic rules and graphic design. In many cases, we can adhere to two design
principles:

• Principle of unity
• Principle of contrast

The principle of unity states that elements of a document of the same meaning must
have a uniform appearance. The principle of contrast adds: elements of a document of
different meaning must have a sufficiently different appearance. We achieve uniformity
through structural markup, to achieve contrast we apply a number of different typo-
graphic principles (application of sizes, colors, font types, font shapes, etc.).

Figure 2.2 shows what one of the typographic design options might look like.

Tab. 2.2: Graphic design of letter

Element name Parameters
Address body font, 12 pt, body font shape
Appeal body font, 10 pt, body font shape
Subject body font, 12 pt, bold
Salutation body font, 12 pt, body font shape
Text body font, 12 pt, b. shape, baseline skip 15 pt, align left, spacing 8 pt
Greeting body font, 12 pt, align left, spacing 20 pt
Attachment body font, 10 pt, itemize, bullet

In addition to the visual appearance of the individual elements, the designer also
determines the page parameters (letter head, shape of the first page, shape of any con-
tinuation pages etc.).

11

2.4 Representation of elements – implementation of
typographic design

After connecting the elements of the document with their typographic design, we get a
detailed overview of the required final form of the document, we can now process the
implementation using the tools of a specific program.

All word processing programs have a common general principle. They create a doc-
ument as a conjuction of content and formatting tags, which represents the connection
between content and form (in the sense of our definition of document). These tags (or
also commands, processing commands) can be divided into two categories:

1. Visual tags – define the appearance of the relevant element. Examples: italic font
shape; eight-point size adjustment; creating a vertical gap of 20 points; justified
align of a paragraph.

2. Structural tags – define the meaning of the element. Examples: second level head-
ing; footnote; table field with text content; citation from the literature.

At first sight, it might seem that visual tags are more important: we are trying to
implement the document in the form that we derived according to the typographic rules
for each element. However, we must be aware of one important fact in this context:
the structural mark carries information about the meaning that only the content author
can add to the document – just as only the author determines the individual elements of
the document. Usually, we assign structural tags to the individual elements found in a
document, which inserts author’s information into the computer document.

2.4.1 Structural markup

If a structural tag is essential, then it is quite obvious that the technological goal is to
achieve structural markup, ie. the use of structural tags to identify individual physical
elements of a document. If the used software system allows to mark the document exclu-
sively with structural tags, it is purely structural markup and the obtained document is
from the technological point of view then arbitrarily processable and reusable. However,
some systems are not able to include all document settings in structural tags.

However, the structural tag alone is not sufficient to create the document. It is still
necessary to have its visual appearance. For efficient document processing, it is essential
how assigns a set of visual parameters to the appropriate structural tag. It can be an
“inseparable couple”, where the visual parameters are permanently attached directly to
the structural tag, or the visual definition can be separated from the place where the
structural tag is used, even in a file outside the document. In the second case, it is possible
to replace the visual definition of a certain structural tag, which allows without editing
the document to change the overall appearance or behavior of any elements. In this case,
a very efficient and flexible processing of the document can be achieved.

2.4.2 Software

The concepts of word processing software are very different, but we can detect at least
three basic categories:

12

• programs originally modeling a typewriter, suitable for preparing source codes of
programs, HTML documents or similar files; they can be called program editor
(examples: vi, vim, NotePad, PSPad, KEdit, Emacs and many more),

• programs originally modeling a typewriter, but later enriched by various functions
suitable for the preparation of text documents (various font types and typefaces,
work with paragraphs, pages and document units); they are called text editor or
word processor (examples: WordPad, Word, OO Writer, etc.),

• programs modeling a book typesetting, or at least some parts thereof; the term
DTP system (Desk Top Publishing) is used for them. Typical representatives are
InDesign, QuarkXPress, TEX.

None of the software systems can do everything, so it is necessary to choose a suit-
able alternative for each application, even between systems in the same category. We
also need to know at least a general definition of the functions of individual systems in
order to be able to choose the appropriate variant.

It follows from the above analysis that the crucial feature that we will look for and
use in word processing software is the possibility of using structural markup. In this
context, it is no longer necessary to consider the category of program editors (we will
use them in another role), but programs that insert tags in documents are in the category
of word processors and DTP systems.

2.5 Technological principle of systems based on the TEX
TEX based systems belong to the category of computer models of book typesetting, but
they are characterized by completely different properties compared to other representa-
tives of this category.

2.5.1 Basic principle of TEX

The original idea of the TEX system creator, Donald E. Knuth of Stanford University, was
a computer model of the work of a quality typesetter for mathematical typesetting. This
has always been the most demanding part of creating professional books, including both
precise mastery of the craft and the ability to bring a sense of result to the rate. The
name TEX thus symbolizes the three initial letters 𝜏𝜖𝜒 of Greek word “τεχνολογία” which
means technology and at the same time art, so it reads “tech”.

At the time this system was created (first attempt 1978), completely different com-
puter technologies were available than today. The basic principle also follows from this
– the author (or maybe also typesetter) writes his text, in which he inserts commands
for typesetting. This source is then analyzed and processed into the resulting material
typesetting in output pages.

The basic principle of the system is shown in fig. 2.1.
As can be seen here, the core of the system is the processing of the source text,

which is accompanied by information about predefined commands, typesetting styles,
fonts used, etc., the main result of the translation is typeset material in DVI (DeVice In-
dependent) format, from which can be obtained for example PostScript format. The main
output is also more recently in PDF format. In addition to the result, the compiler writes

13

compiler

formats, styles,
fonts, etc.

source text

(plain text file)

compile information
(log file)

typeset output

(originally DVI,
now also PDF)

Figure 2.1: Basic principle of the TEX

a comprehensive report, from which can be read all relevant information, possible errors
or deficiencies of the typesetting process. The core of the system is usually surrounded
by a large number of other supporting programs – program editors for source text or au-
tomated source text generators, programs for subsequent processing of typeset output,
programs supplying the necessary components (styles, fonts, images), etc.

D. Knuth focused mainly on high quality output. The system follows all the details
of the work of a qualified typesetter very precisely and allows you to apply typographic
principles created over several centuries. The specific font Computer Modern designed
for ideal math typesetting is also as a part of system. In this respect, the system has no
competition to date.

The second crucial feature is the ability to change the command system in almost
any way to the user’s needs – there is a way to create any new command or change
the behavior of an existing command, including the ability to change the perception of
individual symbols written in the source text. This is also a unique approach.

Creating any commands can be used to create purely structural documents. The
new commands can be designed as structural tags and assigned almost any visual form.
In addition, the definition of the visual appearance of tags can be separated from the doc-
ument into style files, document classes and similar external definitions, thus gaining the
ability to efficiently reuse identical structural tags in another visual and even functional
variant. In the field of word processing systems, there is no alternative that can do more
than this language.

2.5.2 Extensions, distributions

TEX itself has dozens of commands that are able to control the typesetting process in great
detail. However, they are quite complex for the average user and are often unnecessarily
detailed. Therefore, a number of extensions have been created to offer a more user-
friendly environment, but at the same time take advantage of all the benefits and excellent
features of TEX. One of the best known and most used extensions is LATEX, originally
written by L. Lamport (1984). It provides a number of commands that greatly facilitate
the creation of common documents (reports, articles, books, letters, presentations).

However, the development continues to this day and a number of other extensions
are emerging. One of the most prominent is XƎTEX allows word processing in many

14

languages, typesetting from left to right and right to left, the use of system fonts, etc.
and XƎLATEX which extends LATEX. Recently, also other extension – the ConTEXt system
is a completely different view of the way the document, and significant is also Czech
developer Petr Olšák’s OpTEX. The aim of all extensions is mainly to adapt the system
to current needs and possibilities while maintaining the basic principle, which allows to
obtain precise and typographically high-quality documents.

The collection of several compiler variants, many support programs, available styles,
fonts and other necessary components form together the so-called distribution. There
are several distributions, one of the most common being TEXLive. It is characterized not
only by the extent and complexity, but also by the fact that all components are available
free of charge. It can be installed from the distribution DVD or directly from the Internet,
from www.texlive.org. All common operating systems (Windows, Linux, MacOS) are
supported. The distribution is updated annually and its development is taken care of by
a large team of people.

Another well-known and widespread distribution is MikTEX, which specializes in
Windows operating systems.

In addition to installation on a local computer, it is also possible to use Internet
access. At https://tex.mendelu.cz there is a web interface, with which it is very easy
to type the source text and get the final output in PDF or PostScript format. Overleaf is
also a well-known project, enabling dynamic viewing of typed output after each change
of source text.

In the whole next text we will describe the work with the extension XƎLATEX and
the output format will be PDF. This is an alternative that is very widespread and covers
a large number of user needs. Because XƎLATEX is based on LATEX system definitions, we
will talk about both systems.

2.5.3 Working with the system, source text, commands

After installing the selected distribution, the user has the selected compiler at his disposal,
he can choose any program editor to create the source text, and he uses a suitable browser
to display the output. Working with the system consists of a repeated sequence of three
steps¹:

1. creating or editing source text in some program editor (usually we use freely avail-
able editor – PSPad, Notepad++, vim, joe, etc.),

2. compilation of the source text by the selected compiler into the selected output
format (for example, the xelatex compiler with output to PDF format),

3. viewing the result by the output format viewer (in the case of the PDF format, for
example, the generally freely available Acrobat Reader can be used, Ocular or other
alternatives in all used operating systems are very advantageous).

Compared to InDesign, for example, LATEX differs mainly from “non WYSIWYG”².
However, it is necessary to say that this feature is very questionable – the so-called work
in the preview (ie. the situation where we directly edit in the final form of the document)

¹Some user interfaces (TEXworks, TEXstudio, Overleaf) implement these steps in one place.
²WYSIWYG = What You See Is What You Get, ie the user works directly with the resulting document shape.

15

has a number of major disadvantages, starting with a very problematic orientation in
the final typesetting (many things are too small to be visible on the computer screen),
despite the inability to optimize and automate a number of processes to the very difficult
manipulation of some elements – for example special characters at a plain typesetting.
Thus, in the case of LATEX, this is a disadvantage that is perceived mostly only by a begin-
ner who has not yet recognized the immense power of typeset automation and extensive
possibilities of precise output control.

2.6 Command types, groups, environments
The key part of working with the XƎLATEX system is therefore the editing of the source
text. Throughout the following text, we will focus on the commands placed in the input
text material, their concept and possibilities.

The compiler command can have three forms:

1. form so-called active character – the command consists of one character, e.g. $, %
or &;

2. form of one-character command – command starts with backslash and follows one
non-alphabetic character, e.g. \; or \=,

3. form of word command – command starts with backslash and then follows se-
quence of alphabetic characters, e.g. \item or \footnote. After word command
have to be a delimiter – any non-alphabetic character or spaces or line breaks. If
the delimiter is a group of spaces or the end of a line, that delimiter is absorbed
and does not reach the output. This behavior allows you to effectively insert word
commands into the text without accumulating parasitic spaces in the output.

Commands can have parameters. Parameters can be mandatory (usually written
in braces {...}) or optional (always written in square brackets [...]). The optional pa-
rameter can be omitted, then its parentheses are also omitted. The order of manda-
tory and optional parameters is determined by the command definition. Example:
\makebox[2em][r]{kk}

Commands have different scopes. Some commands have only a local effect (they
only operate where they are written), some have a completely global effect (regardless of
where they are mentioned, they will affect the whole document). However, most com-
mands apply to a specific bounded area called group.

We can define the group in the document in two ways:

1. by curly braces {...}

2. by so-called environment, i.e. the part of the document bounded by the commands
\begin{name}...\end{name}

Groups can be nested as needed, but groups cannot be intersected, i.e., an inner
group cannot be closed later than an outer group.

The command scope begins at the place where is written and ends when the relevant
group is closed.

16

2.7 Custom definition
Commands that are available and already predefined can be enriched with more, which
the user can create himself. Custom definitions are relatively simple. Definitions can be
used to create new commands and change the definition of existing ones.

It may be strange at first glance that we are currently creating and modifying com-
mands without presenting predefined commands, but the concept of adapting the system
to individual documents and specific user needs requires that we go hand in hand with
both groups at the same time.

There are several ways to create your own command, including parameters:

• command \def and its variants, this method can be used both for new commands
and for redefining existing ones;

• command \newcommand to create a new command;

• command \renewcommand to redefine an existing one;

• command \newenvironment to create a new environment;

• command \renewenvironment to redefine an existing one.

Examples

Ex. 2.1: \newcommand{\greeting}{Good morning!} – the command only prints the
text “Good morning!”.

Ex. 2.2: \def\salutationman#1{Dear Mr. #1} creates command \salutationman
with one parameter, into which we can enter the name. Example of use:
\salutationman{Fisher} produces the text “Dear Mr. Fisher”. The maximum
number of parameters can be 9. The places where the text of a certain parameter
is inserted in the definition are indicated by the # character and the corresponding
number.

Ex. 2.3: \newcommand{\salutationman}[1]{Dear Mr. #1} – the same as above.
Ex. 2.4: \renewcommand{\salutationman}[1]{Good morning, Mr. #1} – changes

the definition of a previously created command.
Ex. 2.5: \def\finalgreeting#1#2{Regards \\ #1 \\ #2} – creates a command (or

changes the definition of an existing one) \finalgreeting, which prints the text
“Regards” and under it two lines containing two parameters.

Principle of structural markup of documents

Since we can produce any custom commands in the XƎLATEX system, we can only compile
the entire document using structural tags, the visual appearance of which will be included
in the definitions. We can modify these definitions later at any time without having to
change the document.

17

Example of a structurally marked document

\address{Dear Mr.}{Jack Newman}
{Wood avenue 654/11}{67411}{Litchfield}

\refer{13-21/2}{Hutchinson}{Claire Smith}
\subject{Payment advice}
\salutationman{Newman},
\text{we are pleased to inform you that the goods you provided
us were sold according to your instructions, so we will send
the payment to your account.}
\greeting{Anete Garmins}{sales department}
\attachment{Confirmation of the completed transaction}

The text does not need comment, the meanings of the individual parts are clear
based on the appropriate choice of command names. At the same time, however, we see
that there is not any mention of the visual form of formatting in the document. This is
concentrated in the definitions of the individual commands.

2.8 Technological principle based on systems in office
packages

The term office package usually refers to a set of programs used in common user practice
and covering the most common user needs. Word processing programs are an undoubted
and indispensable part of such packages. A representative of free software is Writer from
Open Office or Libre Office, and it is an alternative to programs from licensed office suites.

The Writer program belongs to the category of word processors. The basic different
feature compared to TEX-like systems is the interactive way of marking a document. Most
users use only visual tags in this way, which are placed in a well-accessible form of user
interface.

Nevertheless, even this program has the ability to create and use structural marking
of documents relatively effectively. The base prop is formatting style, which is a named
group of visual parameters. The style name represents the structural information, the
set of visual parameters then define the appearance of this tag. If the structural mark is
assigned to the selected part of the document, then by changing any visual parameter
of the given style it is possible to automatically reformat all parts to which the style is
assigned.

You can also create links between styles – with this method it is possible to promote
the change of one visual parameter to several child styles, and thus ensure the logical
consistency of the entire document.

Unfortunately, styles do not cover all document parameters. These are most often
styles applicable only to paragraphs or parts of paragraphs. Other settings are firmly
linked to the document and cannot be changed effectively (page elements). However, all
settings can be concentrated in a template, based on which new documents are created.

18

Chapter 3 19

Basic document parameters

When determining the design of a document, it is necessary to choose certain parameters,
from which other parts are then derived. One of the most important parameters is the
font used and its basic size.

3.1 Book font – types
All the fonts we can see in the computer world can be divided into two major categories
– typewriter and book. Typewriting was created as a technical prop for typewriters, the
basic purpose of which was to replace handwritten documents in a negligible number of
copies and a relatively small scale. Due to their simplified design, typewriters did not
allow the use of fonts with high aesthetic and technical quality, so nowadays there is no
reason to use such fonts for ordinary documents.

We will deal only with book fonts, the basic feature of which, compared to type-
writer, is the different width of individual characters. This also entails a completely dif-
ferent way of processing documents than on typewriters. One of the deepest mistakes
we can make, then, is that we apply the rules and principles that apply to a typewriter to
a document in book type.

Book fonts can be further divided into approximately three major categories:

• Antique fonts (serif) – are intended for printed documents and represent a basic
branch in typographic development since the 15th century.

• Grotesque fonts (also sans-serif) – in printed documents they are considered as an
additional (headings, captions, subtitles, etc.), in electronic documents their sim-
plified drawing is used for a clearer display.

• Other fonts – for special occasions (also accidental). This includes various decora-
tive, calligraphic, handwritten, angled and other fonts. They are very rarely used
in common documents.

3.2 Body font and its parameters
One of the most basic parameters of documents is used font – its type, face and size. The
whole document is usually created in one font type (combinations of types are sometimes
just an unnecessary complication in design). We will call this font body font. The most
commonly used is the so-called plain face of this type, and also the base size.

Different typefaces and font sizes are used in the document for different elements,
but the font type usually remains the same for the entire document.

The LATEX/XƎLATEX system has the option of setting the body font of the document
so that we don’t have to worry about it anywhere else. This concept is enriched by
the relatively well-thought-out possibility of changing sections and degrees so that the
document as a whole looks good. However, this is balanced by the fact that such a central
choice cannot be completely arbitrary, certain options are predefined, from which it is
then possible to choose.

Implementation in the XƎLATEX system
The document in the XƎLATEX system has its own structure – it consists of an introduc-
tory command introducing the so-called document class, followed by a preamble where
various definitions of global commands and settings and styles can be added (in system
terminology they are also says packages), the preamble is followed by the document en-
vironment. In simple terms, we can show the structure by the following scheme:

Struktura dokumentu
\documentclass[options]{class}
...document preamble; various definitions are placed here
\usepackage{style} % link to package
\begin{document}
...document body; the text is written here
\end{document}

options – an optional parameter allows you to specify some global settings in a given
document class: options twoside, oneside sets a two-sided or one-sided docu-
ment, options 11pt, 12pt set the base font size to 11 or 12 old English typographic
points. The default is one-sided document and default font size is 10 points.

class – defines the document type. The predefined classes are: article, book, report,
letter, slides.
The class can be made by the user according to their needs. It is a file with extension
.cls which contains command definitions.

style – style (package) name with command definitions. There is a plethora of these
packages available. For the typesetting in national languages, we need at least
polyglossia package to define all the languages used in the document. The pack-
age can be created by the user, it is a text file with the extension .sty. All structural
tags needed to write a given document type can be created in the document class
definition and in the document style definition.

% – the % character introduces a comment, the translator skips everything up to the end
of the line, it does not even take into account the end-of-line character itself, which
under normal circumstances is interpreted as a space in the typesetting.

By default, the base font has a type derived from Knuth’s Computer Modern font.
It is a font very characteristic of systems based on the TEX principle, because this font
has always been available in every distribution, including national modifications. It is a

20

so-called static serif, which is suitable for professional documents, it has standard faces,
a sans-serif variant, typewritten font and fonts for mathematical typesetting. It is opti-
mized in several ways for typesetting by the TEX system and its extensions.

However, it is not suited to typeset all documents in the same typeface. There are
a number of quality fonts suitable for professional texts, books of various specializations
and documents of different purposes. In the XƎLATEX system, we can use any font installed
on the given computer. This is arranged by the package fontspec, which is introduced
together with other props by the package xltxtra. In the following example document,
the base font Lido STF, base size 12 point is selected:

Example of document
\documentclass[12pt]{article}
\usepackage{xltxtra} % document XeLaTeX, UTF-8 encoding
\usepackage[a4paper]{geometry} % paper A4
\usepackage{polyglossia} % language switching
\setdefaultlanguage{english} % default language is English
\setotherlanguage{slovak} % alternative language is Slovak
\setmainfont{LidoSTF} % base font type is Lido STF
\textwidth=16cm % text width is 16 cm
\begin{document}
English is set as a first language. If we want to switch
to Slovak, which we also have available, we will write
a command\selectlanguage{slovak} a nasledujúci text
môžeme písať v slovenčine.
\end{document}

After compiling, we get approximately the following result:

English is set as a first language. If we want to switch to Slo-
vak, which we also have available, we will write a command a
nasledujúci text môžeme písať v slovenčine.

For practice:

1. Create a document on B5 paper with the body 11-point Bookman font. Write a few
lines of text in your mother language and add at least three lines in English. Switch
the language accordingly, watch for possible hyphenation.

2. Try typing the same document in Times font type and see the difference between
the space occupied by Bookman and Times.

3. Typeset the same text on A5 paper in a 10-point font with the default font.

4. Experiment with the width of the text – try, for example, what the output will look
like in a narrow column (around 5 cm). Observe hyphenation in the languages
used.

21

3.3 Document in printed or electronic form
We can detect a certain difference between the printed and electronic final form of the
document. While printing on paper is usually performed with a raster density of at least
600 dpi (but also in the conditions of ordinary office practice significantly more), the
display (projector, mobile phone, etc.) is at a much lower density (around 100 dpi). It
clearly follows that we cannot expect high-quality rendering of details in a document
intended only for display on the screens of individual devices. We have to choose such
tools that cope clearly with the given lower display density.

The most common and obvious change is choosing the appropriate document font.
While a paper document will typically have one of the serif types as the base font, elec-
tronic display requires a font without small details, hair strokes, or complex drawings
that may not display perfectly enough, especially in smaller sizes. We use sans-serif
fonts, taking into account the expected size and density of the display.

The second significant change is also the density of embedded raster graphics. It is
not necessary to prepare image information in a density that significantly exceeds the
expected display – this increases (with quadratic dependence) the size of the files and
complicates the transfer and any other processing.

If we are considering a publication in both printed and electronic form, we will ad-
vantageously use alternative visual definitions of structural marks and prepare a double
document format. Of course, this also requires the preparation of raster images inserted
into a double-density document; vector images that do not need any change are very
advantageous.

Printed publications also often reduce color requirements for cost-saving reasons:
while color publications are as “expensive” as black-and-white images for electronic pub-
lications, colors pay many times higher production costs for printing. Alternative defi-
nitions of structural marks can also ensure that the document is always displayed in the
appropriate visual form.

Implementation in the XƎLATEX system
How to create and apply alternative definitions of structural marks? We will present the
possibilities usable in various situations, but meeting the basic requirement: according
to some central choice (in one place of the document) it is possible to switch the overall
appearance of the document for the required type of output (paper, screen, color ...).

1. The first (simplest and most general) option is to create different style files for
different types of output, e.g. letterprint.sty and letterscreen.sty. In both
of these files, there will be definitions of the same structural commands, but each
with respect to the type of output. For example, in the file letterprint.sty
there will be a base font definition \setmainfont{Constantia}, while in the
file letterscreen.sty will be \setmainfont{Verdana}. You can change the
output by changing the command in the document preamble:
\usepackage{letterprint} or \usepackage{letterscreen}

2. If for some reason we want to create only one style file for a given document and
there are not many definitions of structural tags, then we can create alternative def-

22

initions as part of a distinguishing statement (or set of distinguishing statements).
The basic concept can look like this:

Alternative command definitions
\def\topaper{\setmainfont{Constantia}

\def\subject#1{{\bfseries #1}} ... }

\def\toscreen{\setmainfont{Tahoma}
\def\subject#1{{\bfseries\color{blue}#1}} ... }

The distinguishing commands here are \topaper and \toscreen – we will write
them as needed (probably in the preamble) in the document and the rest of the
structural marks will receive alternative definitions. As can be seen from the ex-
ample, the body of distinctive statement definitions is the alternative definitions of
all statements whose operation depends on the type of output. The advantage of
this approach is that in one file and in one place we have the possibility to compare
definitions and change them at the same time.

3. Definition branching – the use of branching definition allows you to apply different
options depending on the set option. What does TEX branching look like? There
are a number of options, we will choose the simplest of them:
You must first create a branch command. This is done with the command \newif
for example, as follows:
\newif\ifpaper
This automatically creates two more commands: \paperfalse and \ papertrue.
The first one sets the \ifpaper condition invalid and the other valid. Then we can
use the new branch command as follows:
\ifpaper \setmainfont{Constantia} \else \setmainfont{Tahoma}\fi
We then specify \papirfalse in the document as needed and from that point on,
the parts in the branch between the word \else and \fi apply to the definitions.
Conversely, by entering the command \papertrue we get the definitions for the
valid condition \ifpaper.

In conclusion, we will just warn you that the concept of alternative definitions will
be fully functional only if the document contains purely structural markup. So we add
further justification that structural marks lead to efficient document creation.

23

24 Chapter 4

National environment and special
characters

Nowadays, in many documents it is necessary to use a number of characters that are
somehow related to the set language. Word processing systems were mostly created in
the environment of English-speaking countries, which use only 26 letters without accents
and other peculiarities to express any text. It is very unique how systems based on the
TEX principle have been thoroughly dealt with typesetting in other languages since the
early 1980s. The concepts created in these historical ages are no longer used to the same
extent as before, yet it can be said that the tradition of respect for typesetting in other
languages is maintained to this day.

The situation did not change much until the advent of universal character encoding
with multibyte codes (UTF-8, UTF-16, UTF-32). The possibilities of various programs
have reached the same level, and most of the previous solutions of various specialties
could be simplified or abandoned altogether. Nevertheless, there are options that are
given zero or minimal attention in other systems.

4.1 Input text encoding
As mentioned above, working with the locale requires efficient acquisition of the source
text (more precisely, its content) and this is based on the ability to turn on the appropri-
ate encoding. In the case of Czech, Slovak, Polish, Hungarian and similar geographically
located texts, it is evident that coding is an indispensable prop. In all language areas,
a staggering number of texts have already been produced in a variety of encodings. Al-
though it is a modern effort to convert the necessary documents into one of the universal
encodings, it is still necessary to work with the original settings. You can use the com-
mand in the preamble, for example:

\inputencoding{isolatin2}.

In the XƎLATEX system, the default encoding is UTF-8, in which it is possible to use
all the characters of the font used. In this context, however, it is necessary to emphasize
that not every font is equipped with all the necessary characters.

4.2 Locale setting
In the system XƎLATEX it is possible to set the locale by using the package polyglossia.
There are also alternative methods (package babel, etc), but we will not deal with them
for simplicity of interpretation.

By selecting the language, the corresponding hyphenation patterns are loaded,
language-dependent strings are set (for example, “kapitola” in Czech instead of “chap-
ter”) in English, some specific commands for using the font are selected, the date and
time format is set, and so on.

We can use the already mentioned command to select the basic language
\setdefaultlanguage{lang},

whose parameter is the language name (a list of supported languages is available in the
polyglossia package documentation). If you want to use more languages in the document,
you can “preset” them with the command \setotherlanguage{lang}.

There are several ways to change the language in the text:

• The command

\text{lang}[options]{material}

will set the material in the set language.

• Environment with the name of the language, i.e. construction

\begin{lang}...\end{lang}.

• By the switching command

\selectlanguage{lang}.

4.3 Hyphenation algorithm and its settings
The TEX-like systems use a hyphenation algorithm based on specially designed patterns,
to which other less frequented or specific words can be added. Hyphenation patterns are
created for many languages, and are set by selecting a language in the locale.

The hyphenation algorithm works with two values: the minimum number of char-
acters to be left in the first part of the hyphen, and the minimum number of characters to
be in the second part of the hyphen. The default values are 2, resp. 3. These parameters
are set by commands \lefthyphenmin = x and \righthyphenmin = y. Sometimes
it is appropriate slightly to loose these boundaries. For example, under predefined cir-
cumstances, the Czech word “osoba” (person) cannot be divided – but possible dividing
points are “o-so-ba”. So two variants come into play: o-soba and oso-ba. However, none
of them has at least two characters in the first part and at least three characters in the
second part at the same time.

You can use the \hyphenation{} command to add exceptions or additional words
to existing patterns used in the preamble, in the parameter of which whole words with
indicated dividing points are written using hyphens. The separator between the words
is a space, the number of words is not limited. Example:

\hyphenation{Post-script meta-lang-uage hardly}.
In the last word, we indicate the desire to completely exclude division.
If we do not want to create a global list of exceptions or release the character counts

of individual parts of the hyphenated words, we can use “manual” hyphens in the ap-
propriate place in the text. To indicate a hyphenation point, use the \- command, for

25

example Post\-script or meta\-language The division algorithm uses only these
hyphenation points, no other, even if the word is in the exception list or hyphenation
patterns can be applied to it.

4.4 Special characters and their solutions

Typographic principles and rules
The term plain typesetting means text typeset to one type, typeface and font size. This
is usually the body text of the document. At first glance, it would seem that a plain
typesetting is really nothing – just words arranged in sentences, paragraphs and pages.
However, there are a number of characters in the common text that express various se-
mantic and aesthetic differences in the typesetting and enable accurate and fast reading
of the text. Some of these characters are precisely defined in the Czech spelling rules,
some of which are part of the typographic rules. We will give at least a brief overview of
these features for Czech language.

• Spaces – are the most common characters ever. We can divide them into inter-
character and inter-word. Inter-character spaces are usually managed by the sys-
tem itself (ligatures, kernings), in rare cases certain changes are made with them
(for example, letter spacing or tracking – this variant of emphasizing is no longer
used today).
Interword spaces can be normal, extended and narrowed. Normal interword spaces
are used to justify the paragraph to a block, so they have a flexible size (correctly,
its size should range from a quarter to a half of font size). Narrowed and widened
gaps are solid.

• Hyphen – a horizontal bar connecting two words; used in accordance with the
Czech Spelling Rules. There are never spaces around the hyphen. The hyphen that
reaches the end of the line must be repeated at the beginning of the next line.

• Dash – semantically and graphically it differs from a hyphen. It has two meanings:
it either replaces the punctuation mark, then spaces are inserted around it, or the
second meaning when it replaces the words “to” or “versus”, then it is bet without
surrounding spaces. In this second sense, he must not get to the line break – he
must be replaced by the corresponding word. In American English there are two
sizes of dash – the size of “punctuation” dash is equal to font size and the size of
“interval” dash is a half of font size. The surrounding spaces are missing in both
cases.

• Quotation marks – are twofold: initial and final. In common book fonts, the initial
quotation marks are in the shape of nines and are placed on the baseline, the end
quotation marks are in the shape of sixes, and are “hung” on the top line. In English
there are different shapes: the initial quotation mark is in the shape of sixes and
final in the shape of nines. Both of them are on the top line.

• Degree sign, percentage and per mille – these characters have a common feature in
space: in Czech texts, if they are connected without a space to the previous number

26

(word), they become part of it and then form an adjective as a whole. Written with
a space, they form two separate units with the previous word. These characters are
typeset without space in English.

• The multiplication character – is often incorrectly replaced by the letter “x”. It
is added without a space if it forms a repetition expression (e.g. 5×), but with sur-
rounding spaces it is typeset in the sense of a multiplication operation or expression
of area dimensions, etc. (e.g. the surface is 10 × 15).

• Other characters – this includes ellipsis (three dots), the character et (&), asterisk,
dagger, paragraph, etc. Usually these characters have a special space.

Technical solution concept
From a technical point of view, the way in which special characters are entered is solved,
because most of them are not located directly on the computer keyboard. Therefore,
there are different ways to express them, which can be used to insert the character into
the computer and also to set the appropriate behavior.

Implementation in the XƎLATEX system
The implementation of special characters is shown in the following table. It contains
some commands, the definition of which is not implicit in the system, we have to do it
ourselves. These are the following cases:

• Narrowed spaces – we need at least two: one quarter of font size for most cases
and one sixth for space with ellipsis. The definitions are as follows:

\def\,{\penalty 10000\hskip 0.25em}
\def\;{\penalty 10000\hskip 0.16667em}

• Hyphen with automatic end-of-line detection and repetition on the next line:

\def\czhyph{\discretionary{-}{-}{-}}

• Dash with automatic end-of-line detection and possible replacement with the orig-
inal word:

\def\to{\discretionary{}{\hbox{to\ }}{--}}

Character Source code Example Typeset output
Space Spacebar press (even multiple)
Narrow space \, 10\,mm

J.\,F.\,Kennedy
10 mm,
J. F. Kennedy

Nonbreaking
space

~ (manually or by the program for auto-
matic inserting after prepositions)

a~thing
and a~nothing

a thing
and a nothing

(to be continued on the next page)

27

Character Source code Example Typeset output
Wide space \quad (1 em) \qquad (2 em) 1\quad Introduction 1 Introduction
Paragraph Empty line (even multiple)
Three dots* ... or \dots silence\;\dots silence …
Hyphen - (directly from keyboard) on-line on-line
Hyphen \czhyph (in Czech: this hyphen is

doubled to the beginning of the next line
during a line break)

bude\spoj{}li bude-
-li

Dash* -- (en-dash) --- (em-dash) 6--12 6–12
Dash
(to interval)

\to (this hyphen is replaced by the word
“to” at the line break)

6\to 12 6–12, 6
to 12

Minus $-$ (in math mode) -10 −10
Multiply sign* \times 2×3\,mm 2 × 3 mm
Degree* $^\circ$ 5\,$^\circ$C 5 ∘C
Paragraph* \S (only with number) \S\,36 § 36
Signs #, $ a & \#, \$, \&
Parenthesis { } \{, \}
Characters < > $<$, $>$ $a>b$ 𝑎 > 𝑏
Percent \% 10\% 10%
Quotes* \uv{text} \uv{thing} “thing”
* These characters can also be used directly from an UTF-8 source text.

For practice:

Ex. 4.1: Typeset with special characters: We work from 8 to 14 hours. Even at tempera-
tures below minus 15 Celsius degrees, the train in the Rocky Mountains overcomes
an ascent of two and eight tenths of a percent. With a fifty percent probability, the
bearded paragraph (in quotation marks) ten of the Study and Examination Regula-
tions will be used twice.

Ex. 4.2: Express with special characters that the mast is painted with yellow and green
stripes, working hours are from 9 am to 5 pm, a match between Real Madrid and
Barcelona is played on Saturday and that the lighting will cost about 150 US dollars.

28

Chapter 5 29

Paragraph typesetting, algorithms,
parameters

5.1 Typographic measuring systems, lengths, length
registers

Before we will focused on to the paragraph typesetting, we need to turn a little and we
will briefly deal with the measurement systems in typography.

For historical reasons, the field of typography and the production of printed ma-
terials uses special measuring systems developed around the 18th century. The units of
measure are derived from the ancient measures (French foot, English foot) and were later
slightly adjusted to the metric, resp. inch system.

The system used in continental Europe comes from France and was originally asso-
ciated with the size of the French foot. In 1776, François Didôt published his manual for
typewriters, where he determined the size of the basic typographic unit in relation to the
metric measure. The base unit is typographic point; Didôt determined that 2660 points
gives one meter, i.e. the size of the point is 0.376 mm. The larger unit is cicero = 12 Didôt
points.

The system used in England and later widespread in America was based on the En-
glish foot, around the beginning of the 19th century, it was then connected to inch units
in connection with the development of typesetting machines (monotypes). The basic ty-
pographic unit is also one point (marked 1 pt). Its size is equal to 1/72 inch, i.e. 0.353 mm.
The larger unit is pica and is equal to 12 points.¹

It can be seen that both systems are similarly built, but there are differences between
them. In addition, the development of computers has become a rather curious thing: soft-
ware (as well as hardware) originating mostly from the USA was naturally equipped with
an English measuring system. It has been adopted with this software in most European
applications, so after several centuries, we also work with English points in continental
Europe. This is good to know, because in some cases the typographic recommendations
used in Europe relate to Didôt points, and for American software it is appropriate to
convert to English points.

In addition to the mentioned absolute units, the units relative are also used. These
are related to the size of the font used. There are two em (equal to the font size – approx-
imately the width of the capital letter M) and ex (half of em, approximately the size of
letter “x”). Relative dimensions are very often used to express dimensional relationships
and their use is very efficient.

¹We will use the “pt” notation in connection with the TEX system for the original English points of size
0.351 mm. Monotype points are also used in the TEX system, but are caled “bp” – acronym for “big point”. Also
“pica” is the original English measure and is equal to 12 pt, not 12 bp.

5.1.1 Paragraph

Paragraph is considered a basic element of the document. Its shape and mutual visual
separation have a fundamental influence on the overall appearance and effect of the doc-
ument on the reader. The typesetting method is affected by several parameters, the ap-
propriate values of which are given (see also Fig. 5.1).

page construction

indent line

special indent

break

z

l p

spacing o

left margin right margin

Figure 5.1: Parameters of paragraph typesetting

5.2 Body text typesetting parameters
Aligning – overall adjustment of individual lines of the paragraph. The basic option

is justify (the left and right margins are aligned). Justifying is achieved by even
changes in interword spaces and hyphenation.
Other alignment options are ragged (only the left margin is aligned, or only the
right margin is aligned), or centered.

Line spacing – baseline distance of two consecutive lines. For optimal readability, it is
set to about 120% of the font size. Its exact determination also depends on the font
and the degree used.

Special indent – a space before the first character of the first line of a paragraph. Used for
visual separation of paragraphs. Sometimes it is not used where visual separation
already occurs – typically after the title. Its size varies between one and two em
(for a ten-point font, i.e. 10–20 points), depending on the width of the lines.

Spacing – additional vertical space between paragraphs - creates another method of vi-
sual separation of paragraphs. Not used if special indents are used. Its size is
typically half the line spacing. To achieve identical line spacing on all pages, the
indent is set to a value equal to line spacing.

30

Left and right margin – additional space between the margin of the previous text and the
margin of the paragraph on the left or on the right. Used for special paragraphs,
such as enumerations (left margin), quotes (both margins), etc. The margin size
corresponds to the size of the special indent.

Technical solution concept
The paragraph typesetting in computer programs is controlled by the line break algo-
rithm. The quality of this algorithm determines the overall quality of the entire docu-
ment. The basic goal of the right typesetting is to obtain as even a distribution of inter-
word spaces as possible and an overall adjusted appearance. Line breaking algorithms
can generally work with each line separately, or they work with the entire paragraph or
other parameters. The problem of hyphenation and manipulation of some special char-
acters is often included in the determining of line break.

Implementation in the XƎLATEX system
A very sophisticated line breaking algorithm is implemented in TEX-based systems. In
this respect, TEX does not have a more serious competitor among other computer type-
setting programs.

To start a new paragraph, you need to insert a blank line (or more blank lines – they
behave like one), or use the explicit command \par.

You can use the \\ command to move to a new line inside a paragraph. This com-
mand has an optional parameter that specifies the distance to the next line. Example:
\\[20mm] – the command causes a vertical gap of 20 mm after moving to a new line.
This command is never used as a new paragraph break.

Paragraphs automatically move to the next page when the page is filled. It is moni-
tored that the page break does not occur in an inappropriate place in the paragraph, this
monitoring can be affected by the following commands:

• \widowpenalty=number – an integer number in the range 0–10000 determines
the “strength” of the penalty of the so-called widow – first paragraph line sepa-
rately on the page end.

• \clubpenalty=number – an integer number in the range 0–10000 determines the
“strength” of the penalty called orphan – last paragraph line separately on the new
page start.

• \brokenpenalty = number – an integer number in the range 0–10000 specifies
the “strength” of the page break penalty after the line that has a split word at the
end.

You can use the \newpage commands to go to a new page (normal page break),
command \clearpage (drop unplaced floating objects and go to a new page) or
\cleardoublepage (dropping unplaced floating objects and moving to the next odd
page).

By default, the typeset is provided with justifying, the special indent is equal to 15
points, line spacing is 12 points, spacing and both margins are zero. To change the default

31

typesetting, we need to set some length parameters, but we need to know something
about the tool called length register and the possibilities of entering length in the TEX
system.

All dimensions are internally processed as integer values. Therefore, there are no
rounding errors during handling. The unit is the so-called scaled point (sp), which rep-
resents a distance of 5.35⋅10−9 m, i.e. about 5 nanometers. All other units represent only
integer multiples of this dimension.

The TEX system is unique in its ability to use different measurement systems. You
can work with the English typographic system, the European typographic system, with
inch or metric values. Usable units are:

name symbol note
historical english typographic point pt 0.351 mm
monotype typographic point (big point) bp 0.353 mm
pica pc 1 pc = 12 pt
European Didôt’s typographic point dd 0.376 mm
cicero cc 1 cc = 12 dd
inch in 1 in = 25,4 mm
centimeter cm
milimeter mm
scaled point sp 65 536 sp = 1 pt

The system also has relative units:

name symbol note
em em 1 em = font size
ex ex 1 ex = x-height

Flexible length is a length that, in addition to its natural size, has a defined stretch-
ability and shrinkability interval. Flexible lengths are applied where the alignment algo-
rithm works (for example, paragraph break, page fill). Maximal stretchability and shrink-
ability are defined by the keywords plus and minus.

Examples

Ex. 5.1: Flexible length 12 pt plus 1 pt minus 2pt can have a maximum size of 13
pt and a minimum of 10 pt.

Ex. 5.2: Length 2cm minus 0.35cm can be shrinkable only.
Ex. 5.3: Length 2in plus 35bp can be stretchable only.
Ex. 5.4: Special length \fill has zero natural size, but is infinitely stretchable.

Length registers

We can store the length in the length register. Some registres are already predefined,
but you can also create your own. The registry has a name that has the form of a regular
command. To insert a value into the register, use the command

\register = length

The length value setting applies within the group.

32

To use a register value, we write the name of the register, which can be preceded
by a real coefficient by which the value of the register is multiplied. By multiplying the
flexible length, it becomes an solid length equal to a multiple of the natural size (without
shrinking and stretching).

Registers that relate to the paragraph typesetting:

\textwidth – width of typesetting (used in preamble),

\textheight – height of typesetting (used in preamble),

\parindent – special indent,

\parskip – spacing (flexible length),

\baselineskip – line spacing (cannot be set directly, it affects the font size setting or
the \baselinestretch coefficient, which must be redefined),

\leftskip – left margin,

\rightskip – right margin.

Spaces

\hspace – horizontal space; in the parameter of this command there is any measure rep-
resenting the required space. A space is created inside a line, not at the beginning
or end. Example: \hspace{2\parindent}

\hspace* – a horizontal space command which works everywhere.
Example: \hspace*{20pt}

\vspace – vertical space; in the parameter of this command there is any measure repre-
senting the required space. A space is created inside the page, not at the beginning
or end. The command can be used between paragraphs only, not within a para-
graph. Example: \vspace{5.5\baselineskip}

\vspace* – a vertical space command which works everywhere.
Example: \vspace*{\fill}

\smallskip – command for a vertical space of 1/4 line spacing. Used only between
paragraphs.

\medskip – command for a vertical space of 1/2 line spacing. Used only between para-
graphs.

\bigskip – command for a vertical space of line spacing. Used only between para-
graphs.

33

Examples

Ex. 5.5: \textwidth=125mm – setting the width of the text to 125 mm.
Ex. 5.6: \parindent=2em – setting the special indent to 2 em.
Ex. 5.7: \footskip=5\baselineskip – setting the page footer distance to five times

the line spacing.
Ex. 5.8: \parskip=20pt plus 3pt minus 2pt – setting the flexible paragraph spac-

ing.
Ex. 5.9: Affecting of line spacing: \def\baselinestretch{1.5}\normalsize – the

line spacing increases to one and a half times the normal size. The command to set
the font size causes the newly defined coefficient to be applied.

Ex. 5.10: \leftskip=2\parindent \rightskip=\leftskip – setting the margins of
a narrowed typesetting (such as a quote) to two special indent size.

5.3 Other paragraph document elements
In addition to the body text, other parts in the form of paragraph material appear in
the documents, but with other visual (and sometimes functional) parameters. These are
various enumerations and lists, quotes, notes, captions of tables and figures, table fields,
etc. For these paragraphs, we need to change the typesetting parameters appropriately to
distinguish them from the body text and not leave the reader in doubt as to what element
it is.

Implementation in the XƎLATEX system
Paragraph environments

Several environments are used to change the implicit paragraph typesetting:

center – centering.

flushleft – left align (ragged right).

flushright – right align (ragged left).

verse – verse; the start of new verse is done by command \\, at least one blank line is
inserted between the stanzas.

itemize – items with starting character; each entry begins with a command \item.

enumerate – enumerated items; each entry begins with a command \item.

description – description; each entry begins with a command \item[term].

verbatim – environment for literal text. A special environment in which no com-
mands are interpreted and the typesetting exactly corresponds to the notation in
the source text.

34

Examples

Ex. 5.11: Enumerated list:

Today's tasks:
\begin{enumerate}
\item Take the coat to the dry cleaners.
\item Buy 2 kg of potatoes.
\item Betting at the post office for a delivered package.
\end{enumerate}

Ex. 5.12: Description list:

What we learned at school yesterday:
\begin{description}
\item [National character encoding] -- there are several approaches
to display national characters on computer.
\item [Calculation of own information] -- one can find out how much
information it carries certain message.
\item [Data redundancy] -- is the difference between the maximum
possible entropy and the entropy of the given code.
\end{enumerate}

For practice:

Ex. 5.1: By appropriately setting the typesetting parameters, type the selected text up to
a width of 80 mm with special indents of one em, zero spacing with a stretch of 2
points, for one paragraph set the left margin to 1.5 times the special indent.

Ex. 5.2: Typeset two stanzas of the chosen poem.
Ex. 5.3: On a selected text consisting of at least three paragraphs, test the operation of

the environment for centering and ragged left/right margins.
Ex. 5.4: Write a description of at least two components of a personal computer.

35

36 Chapter 6

Mixed typesetting

A mixed typesetting uses different typefaces, different shapes and sizes. Since in most
cases we will implement the entire document in one typeface, changes in shapes and sizes
are most often needed. Changing the typeface can be accepted, for example, if we use
a sans-serif variant of the same family. If we stick to props directly available in the TEX
distribution, an example might be Latin Modern Sans Serif combined with Latin Modern
roman, but similar pairs can be seen elsewhere (Noto Sans + Noto Serif, etc.).

6.1 Use of additional typeface
In the XƎLATEX system, the choice of font is solved in several possible ways. At this point,
we already know that we choose the body font with the command \setmainfont, but we
can also add an additional sans-serif and additional typewriter type to the document with
the commands \setsansfont{type}, \setmonofont{type} respectively. We write
these commands in the preamble. We can introduce any font at any time with the com-
mand

\fontspec[options]{type}.
Due to the XƎLATEX technology, the name of any font that is installed in the given sys-

tem can be written as type. This makes the possibilities of using fonts equal to practically
any other word processing program.

6.2 Emphasizing
The most common reason for changing the section is the so-called emphasizing. This is
an increase in emphasis on a certain section of the text. The basic way of highlighting
is the use of italics. The italic font shape has sufficient ability to distinguish between the
highlighted and ordinary part of the text during reading in detail, but does not create
distinct areas when looking at the page as a whole.

Strong emphasis can be realized by bold shape. It attracts attention even with a
quick glance at the entire page, so it is used when we consider this feature useful (for
example, new terms in a textbook are an ideal case). Often, the bold face is also used for
headings or other important and eye-catching elements of the page.

What if we want to emphasize something else in italic text? According to typographical
rules, we will again use an plain shape.

If we want to emphasize something in bold text, we use bold italics.
We must realize two basic things in all emphasizing:

1. emphasizing shapes are always less legible than a normal shape, so we don’t waste
with emphasizing;

2. each emphasizing has its own function in the text, so we try to always implement
the emphasize consistently uniformly so that the meaning of the shape changing is
similar throughout the document.

An important rule is that if a part of text is marked with a certain shape, small punc-
tuation is also provided with the same shape, if it belongs to this text, and the marked
text in quotation marks or brackets also has the surrounding quotation marks and paren-
theses typeset with the same shape. If, on the other hand, an individual word is marked,
followed by a comma or a period belonging to the entire sentence, the small punctuation
is no longer emphasized.

Other available shapes are slanted and Small Caps. The slanted shape has a weak
distinguishing ability (compare with italics), so its use for emphasizing is not recom-
mended, it can be used for change of graphic concept of the document. Small caps are
often used for their dignified character to indicate names of persons, important titles, etc.

We DO NOT use underlines for emphasizing!

Underlining is a prop firmly connected to the typewriter and its possibilities, it has
practically nothing to do in typesetting. A line in a composition has a completely different
purpose – most often the separation of two units. In addition, underlining greatly reduces
the readability of the text, as it collides with the descenders of the characters.

Nowadays we no longer use the so-called expanded spacing (increasing the spaces
between characters) and certainly not the so-called insertion, i.e. the insertion of inter-
word spaces between all characters (this is exclusively a typewriting prop). At the time
of typesetting with metal letters, expanded spacing was used for economical reasons,
so that a font of a different shape did not have to be produced. Today, this reason has
completely disappeared, so the poor legibility of the expanded character spacing is not
needed at all for normal emphasizing purposes.

Why do we change font size?

Appropriately used different font sizes significantly contribute to good orientation in the
text. A logical and moderate choice of sizes in accordance with common rules therefore
guides the reader and helps him in reading. In general, we decrease the importance with
a smaller size, and with a greater size, we increase the importance of the text. We relate
all font sizes to the main font size.

For example, what part of text can have a different size? Footnotes, image and table
captions, tabular data, data in the running heads, etc. are typed with a smaller size, larger
sizes are used mainly for headings.

We do not use font size change for emphasizing!
How much larger or smaller should the respective size be? The rule here is that

a change of at least 20% is required for sufficient differentiation of the individual sizes.
Therefore, it is not permissible for us, for example, to set the heading of one level in a
14-point font and the heading of a lower level in a 13-point font.

Implementation in the XƎLATEX system
A change of shape or size is very often understood as a change of material in a certain
part of a paragraph or a certain part of a document. This section can usually be defined

37

by a group (expressed by curly brackets or an environment). The commands for changing
the font type, typeface or font size are therefore valid within the group, but some variants
are also available that work with the material in their parameter.

Commands that affect the text to the end of the group can be applied to any length
of text. Commands that work with text in a parameter can only be applied to material
within a single paragraph.

Following commands are available for change of font type and typeface:

Font type and typeface changes
\textrm{...} or {\rmfamily ...} serif font type
\textsf{...} or {\sffamily ...} sanserif font type
\texttt{...} or {\ttfamily ...} typewriter font type

\textit{...} or {\itshape ...} italic shape
\textup{...} or {\upshape ...} up shape (from italic)
\textsc{...} or {\scshape ...} small caps
\textsl{...} or {\slshape ...} slanted
\textbf{...} or {\bfseries ...} boldface
\textmd{...} or {\mdseries ...} normal (from boldface)

\emph{...} or {\em ...} emphasizing

The command {\em ...} is somewhat different. It behaves like this: If there is a
normal typeface in its place, it turns on italics. If there is italic text in the place, it will
turn on the upright shape. It precisely implements the typographical rule about nesting
emphasizing, so it can be advantageously used for normal emphasize without having to
“manually” check the correctness of the shape settings.

There are commands available to set the font size, the effect of which depends on
the main font size setting. All commands have only one form that has an effect within
its group. Automatically, with the setting of the appropriate font size, the correct line
spacing in the paragraph will also be adjusted. In the overview, for basic orientation, we
also list the point sizes that relate to the default setting of the main font to 10 points:

Font size changes
{\normalsize ...} main font size 10 points (set by default)

{\large ...} size 12,00 points
{\Large ...} size 14,40 points
{\Large ...} size 17,28 points
{\huge ...} size 20,74 points
{\Huge ...} size 24,88 points

{\small ...} size 9,00 points
{\footnotesize ...} size 8,00 points
{\scriptsize ...} size 7,00 points
{\tiny ...} size 5,00 points

38

In addition to the listed commands that work with relative sizes, you can use the
command \fontsize{size}{line spacing}\selectfont and thus enter any size and any
line spacing.

For practice:

Ex. 6.1: Typeset: The circumference of the Earth was already calculated by Eratos-
thenes around 300 BC, when he used changes in the observation angle of the star
Sirius on the same day in two different geographical locations – in Athens and in
Alexandria. With the devices of the time, he got a surprisingly accurate result.

Ex. 6.2: Set the main font to Bookman and type the selected sentence in three sizes: 7,
10 and 17 points. Then do the same with the default Latin Modern font. In both
cases, study the shapes of the letters in the lowercase and uppercase sizes. What
conclusion can be drawn from this observation?

6.3 Technology – colors, models, definitions
One of the props that has become very widespread, especially with the possibility of
electronic publishing and display on computer monitors, is complementary color. As
its name already says, it is a complement to the basic color (black) and, according to
typographical principles, it should create a sufficient contrast. Color shades are often
used for this purpose, which are also economical in terms of price in printed publications,
i.e. they are basic colors that do not require mixing and multiple passes through the
printing machine. This is especially true for offset printing. In today’s advanced printing
machines, the source of which is a PDF file that is directly printed on paper without
matrix preparation, the color requirements are different, but it is always advisable to think
about possible applications where mixed color shades could create certain complications.

Working with colors in the XƎLATEX system is enabled by the xcolor package, we
will note the most basic options.

With the command \color{color} the coloring of the following printed material
can be switched on. The set color is valid until the end of the group. The parameter is the
name of the color, which is either predefined or can be created using the define command
\definecolor.

An example of a color definition and a command for a new term in the textbook:
\definecolor{myblue}{rgb}{0.3,0.5,0.74}
\def\newterm#1{{\color{myblue}#1}}

Example of use (the text is then structurally marked):
The basic element of document is \newterm{paragraph}.

The command \textcolor works similarly with the difference that it sets the cor-
responding color for the material in its parameter. Example:
\textcolor{myblue}{Text printed with complementary color}

Another command is \colorbox – allows you to create a frame with a defined
background color.
Example: \colorbox{lightgray}{This is text on a gray background.}
The result is: This is text on a gray background.

39

The frame can be bordered with another color, command: \fcolorbox{a}{b}{t},
example: \fcolorbox{myblue}{lightgray}{Highlight text} produces
Highlight text

The background color of the entire page can be set with the command \pagecolor
– the background will start on the current page and continue until the next change or
the end of the document. Example: \pagecolor{lightgray}

40

Chapter 7 41

Document division

7.1 Heading systems
The text of a document consisting of a sequence of paragraphs is often divided into log-
ical units that have their own headings. The correct system of headings significantly
contributes to good orientation in the logic of the document, therefore its choice and
implementation requires adequate attention.

Heading systems can look different, one of the most used is the single different pa-
rameter principle. That is, the headings have a common typeface and a common shape
(for example, they are all bold), they differ only in size and the corresponding vertical
spaces. The more important the heading (higher level), the greater the size. The second
option is the same type and the same size, the difference is in the shape – for exam-
ple, the most important heading is bold, the second level is italic, the third level is plain.
The first mentioned system is more suitable for larger documents, the second is used in
newspapers and magazines due to its space saving.

Especially in professional documents, headings can have numbering emphasizing
individual levels. A hierarchical numbering (1 – 1.1 – 1.1.1) is often used.

Implementation in the XƎLATEX system
The heading system is available with a set of commands: \part, \chapter (it is available
in the document classes book and report), \section, \subsection, \subsubsection,
\paragraph, \subparagraph. All of these commands have similar behavior and the
same form – one optional and one mandatory parameter. The mandatory parameter is
the own text of the title, an optional parameter can be another variant of the text that is
used in the header and content. This set of commands does four things simultaneously:

1. types the heading text from the mandatory parameter in the appropriate font size
and with appropriate vertical spacing, keeping the following paragraph on the
same page;

2. the heading is provided with the corresponding number of the hierarchy;

3. creates an item of content; if an optional parameter is given, applies its text to the
content;

4. places the text in the running heads (if used; for headings of the corresponding
levels only), uses its material if an optional parameter is specified.

If we use any of the listed commands with an asterisk (ex. \section*{...}), then
this command does only one thing – the typesetting of the corresponding heading (point 1
in previous list). The title is written without a number and no other actions are performed.
This variant does not have an optional parameter. If we want to arrange any of the other
three actions, we can use other commands and settings (see numbering systems, inserting
material into running heads and transferring information to the table of contents).

7.2 Initials
A rather marginal prop used in special cases is the initial – a very noticeable highlighted
and often decorative first letter of the following text. The initial can be conceived as
just a very enlarged letter on the same line as the following text, the second option is
a suspended initial, i.e. placed next to the paragraph on the left (with the line moved
down so that its upper line aligns with the upper line of the first line), the third option is
the so-called wrapped initial (wrapped around the text of the paragraph). In addition to
the first option, this is technically a rather complex action that is not directly available
with predefined commands, and for its programming it is necessary to know more about
the technicalities of the rate. Given the scope of this material, we will not discuss initials
further.

7.3 Table of contents creation
Automatically generated table of contents is commonplace in almost every word pro-
cessing system these days. Again, on the one hand, the rules for how the content should
look to be as useful as possible for readers can be discussed, and on the other hand, the
technology that will implement the requirements in an efficient manner.

At least briefly on both aspects:
The decision of what should be and should not be in the content clearly belongs to

the author’s information. Of course, this is also related to the use of suitable structural
markup. If the content is to contribute to the easiest possible orientation in the document,
it must simultaneously fulfill two contradictory requirements: to have as little material
as possible to be clear, at the same time to have as much material as possible to facilitate
the understanding of the place to which it is referred. This, for example, is also related to
the appropriate choice of heading text – too long headings are confusing, while too short
headings do not provide sufficient detail about the following text.

The longer the document, the more challenging the design of the content shape. As
one guide, the average difference between two consecutive pages of content items. At
first glance, it can be assessed when the differences are too small, or even zero, that the
content is too detailed, and vice versa. Sometimes it is also approached that the content
is created in two versions: an overview and a detailed one. The reader then proceeds by
finding an area of interest in the overview content and then finding the exact place they
need to work on in the detailed content.

The content also includes lists of tables and figures, or other important document
objects (graphs). The principles of their creation are similar, and it is also true that only
the author of the document can responsibly assess their meaningfulness.

42

Implementation in the XƎLATEX system
As previously mentioned, content items can be automatically created using heading com-
mands. The place where the content should be placed is indicated by the command
\tableofcontents. There are also predefined commands for the list of tables and fig-
ures: \listoftables, or \listoffigures.

Table and figure list entries are created by the \caption commands used for figure
and table labels in table and figure environments.

Technically, the content is created in such a way that, during the compilation of the
document, the necessary information is collected in an auxiliary file with the extension
.toc, or .lot or .lof. In the second compilation, these files are read and the contents or
appropriate lists are dumped from them. If the content is located at the beginning of the
document and the second compilation and typesetting results in material is longer than
one page, it is necessary to use another compilation to adjust the correct page numbers.
So that we don’t have to remember about it, it is convenient (at today’s computer speeds
and common document ranges) to immediately set up a threefold compilation of the
document.

However, in the predefined variant, the headings of all levels are not inserted into the
content. The level to be included in the content is stored in a special counter tocdepth
and has a predefined value of 3. This means that the top three levels are transferred to
the content (section, subsection, and subsubsection in the document class article). If
we want to place, for example, only sections and subsections in the content, we simply
write: \setcounter{tocdepth}{2} (see work with counters).

A content item can also be explicitly created other than by a command for some
heading. The command \addcontentsline is available allowing to create an item corre-
sponding to a heading, or the command \addtocontents to insert completely arbitrary
material into the content. Examples:

\addcontentsline{toc}{section}{content item} – a table of content item is
created as if it were the result of the \section command with relevant text.

\addtocontents{lof}{\newpage} – inserts in the content file for the list of fig-
ures (lof) a command to go to a new page (useful, for example, in a situation where we
need to somewhat influence the default shape).

Examples

Ex. 7.1: Section level title with variant text in content:
\section[TTL integrated circuits]{Selected integrated
bipolar circuits}

Ex. 7.2: Unnumbered heading located in the document table of contents:
\subsection*{Notes on CMOS technology}
\addcontentsline{toc}{subsection}{Notes on CMOS technology}

Ex. 7.3: An unnumbered heading whose text is inserted into the running heads:
\section*{Attachments and comments}
\markboth{Attachments and comments}{Attachments and comments}

43

7.4 Technology – numbering, counters and references
In many cases in the document, it is necessary to use integer marks and associated func-
tions (automatic value increase, listing). The so-called counters are used for this purpose.
They are variables with which we can perform certain operations and refer to their values.

There are a number of ready-made, predefined counters. They are associated with
commands for which they perform the necessary functions. For example, with the com-
mand \section a counter named section is associated and its role is to store the cur-
rent section number. We can also create a counter ourselves, the definition command
\newcounter is used for this. Examples:
\newcounter{ExampNum}
\newcounter{RuleNum}[section]
In the second case, the definition command also allows creating a dependency between
two counters – a new counter RuleNum is automatically reset when the parent counter
section will increase its value by one.

After the definition of a new counter, the command \thename (for example
\theExampNum) is automatically created, which is used to list (display) the value of the
counter.

The following operations can be performed with each counter:

\setcounter – putting a value into the counter.
Example: \setcounter{ExampNum}{10}

\addtocounter – adding any value to the contents of the counter (both positive and
negative). Example: \addtocounter{ExampNum}{7}

\stepcounter – increase the value by 1 and reset all dependent counters. Example:
\stepcounter{ExampNum}

\refstepcounter – the same as \stepcounter, in addition, the value of label is set to
the new value of the counter

\value – get the value of counter to use in arithmetic expressions

\arabic – counter value output method: Arabic numerals; similarly there is \alph,
\Alph, \roman, \Roman and \fnsymbol, allowing the counter to be written as
lowercase, uppercase, lowercase roman numerals, uppercase roman numerals, and
footnote symbols respectively. Example:
\def\theExampNum{\Alph{ExampNum}} will cause the value of the counter to
be printed in the form of capital letters A, B … For dependent counters, a more
complicated form of listing can also be taken into account, for example:
\def\theRuleNum{\thesection--\Roman{RuleNum}} will write the counter
RuleNum in the form 3–VII (if the section value is 3 and the RuleNum value is
7).

We will mention working with counters as needed for individual commands or sit-
uations.

There is one more useful function associated with the counters – the possibility of
cross-reference, i.e. reference. The command \label{label} can be specified in the
place (group, environment) where a counter is used, the value of which is adjusted with

44

\refstepcounter representing a variable into which the value of the counter is auto-
matically filled. If we need to refer to this value, we use the command \ref{label} and
the content of the corresponding label (i.e., the value of the counter) is transferred to the
given place. Another option is to refer to the page number where the label is located with
the command \pageref{label}. Example:
\label{here}We are in the section \ref{here} on page \pageref{here}
gives after processing: We are in section 7.4 on page 45.

Similar to the creation of content, cross-references are technically implemented by
writing the necessary information to an auxiliary file – a file with the extension .aux.
At least two compilations are required to get correct references.

45

46 Chapter 8

Pages

8.1 Page elements
A page is usually divided into a typeface (the rectangle that contains the typed material)
and margins (the free space on a sheet of paper). The typesetting pattern is further di-
vided into a header, typesetting mirror and footer. The typesetting mirror contains the
main material of the document, in the form of ordinary paragraphs of text, which can be
supplemented with footnotes, marginalia, embedded images, tables and mathematical ex-
pressions. In the simplest case, the typeface consists of a sequence of smooth paragraphs,
more complex is a multi-column arrangement.

8.2 Relationship between paragraph and page break
Paragraphs flowing in the type mirror can move to the next page according to certain
rules:

• For each paragraph, there must be at least two of its lines on the same page. It is
inadmissible for the first line to remain alone on the lower edge or the last line on
the upper edge of the type mirror. (A technical solution to this problem has already
been mentioned with paragraph typesetting.)

• Three lines of the following paragraph must remain on the same page after the
heading. This requirement is partially solved – the heading and the following para-
graph are automatically kept on the same page.

• Top-level headings (especially for longer texts) start on a new page (or on a new
right – odd page). This can be solved by defining an appropriate command for the
top-level heading that contains the \clearpage command or \cleardoublepage
command.

• Some paragraphs (table fields, shorter quotations) cannot be divided by a page
break at all. The solution is to use the so-called box, i.e. table field, frame com-
mand \fbox etc.

8.3 Page headers and footers
The page header is primarily used for better orientation in the document. In that case, it
is a so-called live header, i.e. material whose content changes according to the context of
the page content. Most often, the page number is inserted into the live header, followed

by the title of the chapter (section) in books, the name of the article and the name of the
author in proceedings, the name of the section in magazines, etc. The page number is
generally placed on the outer edge so that it is as easy as possible to reach when flipping
through the document.

In the header, which has an optically very advantageous position, we use less no-
ticeable typesetting elements – a smaller typeface, an additional shape. The header must
be separated from the main text by a vertical space of at least one line of the main text,
very often the separation is emphasized with a line.

The page foot has a similar role, but due to its optically disadvantageous position, it
is usually only suitable for page numbering, for which a more conspicuous face (bold) or
an enlarged size is sometimes used.

Implementation in the XƎLATEX system
The headers and footers of the document are handled by special commands, which can
be arbitrarily redefined as needed, or the smart package fancyhdr can be used. Due to
the programmability of all components, the vibrancy of the header is very well ensured,
and in this respect the XƎLATEX type system is far ahead among typesetting systems.

Command \pagestyle – chooses how headers, footers and page numbers are dis-
played. It has one required parameter whose predefined values are: empty – no header,
footer nor page number; plain – the page number is in the middle of the footer and the
header is blank; headings – live headers are displayed with page numbers in the outer
margin; myheadings – live header with slight user modification.

Command \pagestyle sets the page style from the position in source text onwards.
If we want to change the page style for only one page, we can use a similar command
\thispagestyle with a parameter of the same meaning.

With other registers, we can influence the dimensions of the header and footer:

• \headheight – a register setting the vertical size of the header;

• \headsep – a register setting header distance from text;

• \footskip – the register setting the distance footer baseline from the text.

After adding the package fancyhdr the \pagestyle{fancy} option is available
and it is possible to make a number of settings allowing precise control of headers and
footers. For more information, see the documentation for this package.

8.4 Footnotes
Footnote is a frequent element of professional documents in particular. It complements
the main text with its content and allows the reader to study in more detail other aspects
that are not necessary for basic reading due to fluency and maintaining attention. It is
the author’s responsibility to maintain an appropriate relationship between the content
of the text and the content of the footnotes so that the stated objectives are met. The
main text must remain completely understandable even if the reader does not process
any footnote. However, sometimes we see a situation where the most important thing is

47

hidden in the notes; sometimes the notes represent a more significant part of the material
than the main text. Both completely defeat the purpose of this prop.

In the main text there is a link to the footnote, on the same page at the bottom there
is a separator line (it should be about 1/3 the width of the page width) and below it is
the text of the footnote in a reduced size with a reference symbol. A reference to a note
is always placed without a preceding space in the main text. It is also important what
the link is linked to. If the link is meant to be a full sentence, the link is placed after the
punctuation. If the reference is to a single word or phrase, it is placed just after that word
or phrase.

Implementation in the XƎLATEX system
A footnote is provided by the command \footnote, whose parameter is the text of the
note. It automatically ensures that the note is on the same page as the text it belongs to.
By default, a reference to a note is made up of a sequence number.

In some environments (tabular) or command parameters (headings), the footnote
creation command is not functional and it is necessary to solve the whole situation in
other (and sometimes quite complicated) ways. That’s why there is another pair of com-
mands allowing to divide the position of the link and the own text of the note into two ac-
tions – this is necessary, for example, in table fields. Where we need to have a link, mark
with the command \footnotemark (is without parameters). After the incriminated en-
vironment, we will put the required note material with the command \footnotetext
with the corresponding material in the parameter.

The counter footnote, is associated with footnotes. Its value and appearance can be
influenced by the listed counter management commands (modify number value, modify
numbering method). As a special mode of “numbering” can be used fnsymbol just for
the purpose of formatting footnotes. This variant contains typical footnote reference
symbols – asterisks, daggers, etc. instead of numbers.

8.5 Marginalia
Marginal notes, marginalia, are in some cases a very useful tool for orienting the reader
in a document. Their material is very clear on the given page and can form clues that are
very well searched for on the pages. For that reason, they are usually typed in a smaller
typeface and a emphasized shape is used to distinguish them from the main text.

Implementation in the XƎLATEX system
From a technical point of view, however, several settings need to be resolved: there must
be enough space on the relevant side (for a double-sided document, it is always the outer
side) and the marginal note is never divided by a page break. Both can be arranged with
predefined commands. We will set the margins in the manner already mentioned, the
following tools are then available to typeset the marginal notes:

• \marginpar{...} – a command for inserting a marginal note, for double-sided
documents there is a possibility to distinguish the material of the left page and the

48

right page – the material of the left (even) page is written in the optional parameter
before the mandatory parameter;

• \marginwidth – register setting marginalia width;

• \marginparsep – register setting the space between the text and the marginalia.

8.6 Page and paper
For printed documents, this is a relatively essential task. Improper placement of the typed
material on a sheet of paper leads to the fact that the pages are overloaded, uneven, and
the reader perceives the overall appearance of the document as unpleasant. If it is a
larger document, we always design it as two-sided, we solve the parameters of the left
(even) and right (odd) pages as well as the double page as a whole. Previously, due to
technical reasons, some typewritten publications were created as one-sided (right pages
only). Typewriting on ordinary paper sometimes completely defaced even the reverse
side, so that no other text could be placed on it. In the era of high-quality laser printers,
this technical problem is completely solved, and printing on only one side of the paper
almost always just means wasting paper.

For electronic documents, the requirement for two-sided layout is somewhat re-
duced, but the work with blank margins remains very similar.

Placement of typeset material on a sheet of paper

Choosing the size of the edges is one of the classic tasks solved since the Middle Ages.
Human perception of a page is not uniform – the page has its optical center of gravity
elsewhere than the geometric center of gravity (approximately in the upper third). Also,
the right part of the page appears heavier than the left, and it is advisable to lighten
it somewhat by enlarging the right margin. Thus the margins can never be the same
everywhere.

One of the simplest margin constructions used is the ratio of small integers. If we
denote 𝑙 the left margin, ℎ the top margin, 𝑝 the right margin, and 𝑑 the bottom margin,
then we express the margin ratio as follows:

𝑙 ∶ ℎ ∶ 𝑝 ∶ 𝑑 = 3 ∶ 4 ∶ 5 ∶ 7
For a two-sided document, the left and right margins on the even (left) sides are swapped.
If some space is needed for binding and trimming (see 12.3.2), it is subtracted from the
row size of the paper and then the margins are determined.

Examples

Ex. 8.1: We want to set the margins and text width on B5 paper when a 25mm right
margin is specified.
We determine the left margin from the margin ratio: 25 ⋅ 35 = 15 mm. From the size

of the B5 format (176×250), we determine the text width: 176−(25+15) = 136 mm. Then
the top and bottom margins are 20 mm and 35 mm, respectively.

49

Ex. 8.2: We have a sheet of A5 paper and want to type text width of 116 mm. What
margins should we set?
The A5 format has dimensions of 148 × 210 mm. The sum of the sizes of the left and

right margins is obtained by the difference 148 − 116 = 32 mm. We have to divide 32 mm
in the ratio 3 ∶ 5, from here we get a left margin of size 12 mm and a right margin of
size 20 mm. Furthermore, we can easily calculate the top margin (16 mm) and the bottom
margin (28 mm) from the margin ratio.

8.7 Special pages design
Special pages mean, for example, the title page, page with publisher’s record, imprint,
various appendices, etc.

If we still follow to the principles of unity and contrast, we can also derive principles
for the design of such pages.

The title page should use the same font as the main text (unity), if we use an addi-
tional font type for example for headings for clarity, we can also use it for inscriptions
on the title page according to the same principle. In contrast to ordinary pages, however,
the title page has a different design – larger font sizes, a central axis concept, the use
of a complementary color, etc. We try to keep the amount of elements that we apply to
such a page as small as possible (it is stated that we should suffice with three elements –
e.g. three different degrees of font).

The publisher’s record is usually typed to the footer, main font size, and plain type-
face, individual information in paragraphs with ragged right. If there is a large amount
of information, a font smaller than main size can be used.

We proceed similarly when editing other pages of this type (dedication, motto, im-
print).

Implementation in the XƎLATEX system
The layout of a page on a sheet of paper has a slightly different control in TEX type
systems. While in other programs the margin sizes are determined directly, which then
results in the text width, in the XƎLATEX system, the text width is defined explicitly by
the \textwidth register and the correct placement on a sheet of paper is achieved by
shifting the implicitly given left and top text edge points to the required position using
the length registers \hoffset and \voffset. By default, the upper left point of the text
has a distance of 1 inch (25.4 mm) from the edge of the paper, but this is also affected
by the settings of the program for processing and viewing the typeface. The text height,
which is adjustable by the \textheight register, needs to be calculated from the required
margins.

If we use running heads, it is necessary to calculate their size and the necessary
space from the main text to the height of the page layout. The height of the page header
is contained in the register \headheight, we have the space between the header and the
main text in the register \headsep. It is somewhat different for the footer: in the register
\footskip is the distance of the footer baseline from the main text, which is again a value
that we add to the total height of the layout. Then the margins are calculated relative to
this total height.

50

If we need to affect the margins in a different way on the odd and even pages of a
two-sided document, there are two registers available: \oddsidemargin for odd pages
and \evensidemargin for even pages. Their values are added to the registry setting
\hoffset.

Many options for setting page parameters are provided by the geometry package,
which for the sake of brevity we will not deal with in this text and refer the reader to its
documentation.

Examples

Ex. 8.3: Set the necessary values to adjust the horizontal dimensions:
We want to typeset on A4 format, text width 162 mm with margins 𝑙 = 18 mm,

𝑝 = 30 mm. How do we set the appropriate registers?
Let’s set the typeface width \textwidth=162mm and we process the document. By

measuring from the result, we find that 𝑙 = 47 mm. So we set \hoffset=-29mm.
Ex. 8.4: If we use the values of the previous example, we will also set the vertical di-

mensions accordingly. We need to have ℎ = 24 mm, 𝑑 = 42 mm, and this results
in a text height of 297 − (24 + 42) = 231 mm. We will set \textheight=231mm.
After typesetting, we will find that the current top margin is 44 mm, so it will be
\voffset=-20mm.

Ex. 8.5: Select a two-sided document on A5 paper size with a text width of 100 mm and
set all other dimensions to process the typesetting.

Ex. 8.6: Type the title page of the document (center axe, main title to one third of the text
height, large bold font, place information about the place and year at the bottom of
the page).

Ex. 8.7: Test the section, subsection, and subsubsection headings in the document class
article. Create the document table of contents on the selected material. Set run-
ning heads of type headings.

51

52 Chapter 9

Mathematical and similar expressions

Mathematical typesetting has always been the biggest challenge for typesetters in his-
tory, and only the best were able to perform it well. This was also allegedly one of the
main reasons why D. Knuth wanted to solve this problem with computer support. His
system is quite clearly the best that can be used in computer typography for typesetting
mathematics.

The typesetting of mathematical (as well as physical and chemical) expressions is
subject to a large number of specific rules. The necessary unambiguity and precision of
these expressions requires strict respect for all principles, because, unlike ordinary text,
a fundamental shift in meaning can very often occur.

Each mathematical symbol has its unique and permanent shape (font, shape, size,
surrounding spacing). It is irrelevant whether the symbol occurs in a separate expression
or as part of the text of the paragraph. What should the symbols look like correctly? The
answer to this key question is probably best solved by the ISO 80000 standard, which we
recommend to consult if necessary. The set of mathematical and chemical expressions is
elaborated very thoroughly in Nohel’s somewhat older book (1976), from which a number
of rules can be taken.

9.1 Elements of expressions
As building blocks from which expressions are composed, we recognize:

• Individual symbols. They can be variables (letters of the Latin or Greek alphabet)
– they are always typed in math italics. Constants – numbers or named constants,
such as the root of natural logarithms or Ludolf’s number π, on the other hand, are
always typeset with an upright (plain) typeface. In addition to constants, functions
(sin, log), so-called address indices (𝐹max), differential and some other objects are
also typeset with a normal typeface.

• Operators. Plus, minus, etc. are symbols that also carry the corresponding spacing.
For example, the minus symbol can act as a unary operator – denoting a negative
or opposite value, in which case it is set without spaces – or as a binary operator
– denoting a subtraction operation, then typeset with surrounding spaces.

• Indices and exponents. They are typeset with a reduced size, the exponent in the
exponent then with an even further reduced size.

• Roots. The root has a horizontal line as long as the expression under the root and
a height that exceeds the height of the rooted expression.

• Fractions and similar expressions. The fractional line of a fraction has fixed spaces
from the expression in the numerator and in the denominator. The numerator and
denominator are set to a slightly reduced size, and for compound fractions then to
another reduced size. A similar element is the combination number.

• Sums, products, etc. Sums and similar operators have limit expressions below and
above them, which can be set in the form of an index and an exponent (next to the
summation sign) in case of a request for height reduction (in the text of a paragraph
or in fractions).

• Large delimiters. These are large parentheses delimiting, for example, matrices or
similar structures. Their size must be chosen to include the entire space of the
embedded expression.

• Text. Accompanying words can be part of the expression (for example, “and thus”,
“after substitution”). They are always typeset in the same way as the surround-
ing paragraph text. Sometimes verbal expressions are used instead of ordinary
variables, for example, the formula for calculating profit can be written: profit =
revenues – costs. These “word variables” are also always typeset with an normal
shape.

Implementation in the XƎLATEX system
The system can take care of most of the mentioned properties, but in some cases it is nec-
essary to adjust the implicit typesetting method somewhat. The mathematics typesetting
is concentrated in mathematical environments. You can use so-called text math inside
a paragraph, and display math between paragraphs. The symbol used in text mathemat-
ics is adapted to the paragraph typesetting as much as possible, so as to disturb the line
spacing as little as possible. It can therefore have a smaller size, other locations of limits
can be used, etc. In display math, these restrictions do not apply.

There are four mathematical environments:

1. There are three options for text math: $...$ or \(...\) or
\begin{math}...\end{math}

2. There are again three options for display math: $$...$$ or \[...\] or
\begin{displaymath}...\end{displaymath}

3. For numbered display math \begin{equation}...\end{equation}
This environment automatically numbers the given expression, the number is writ-
ten in parentheses on the right margin of the mirror. Example:
\begin{equation} a+b=c \end{equation} is typeset as

𝑎 + 𝑏 = 𝑐 (9.1)

4. For numbered multiline display math
\begin{eqnarray}...\end{eqnarray}

53

The environment allows you to align systems of expressions (for example, equa-
tions) and number each line (or omit the number). It is essentially a table that has
three columns, the left column is automatically right-justified, the middle column
is centered, and the right column is left-justified. Example:

\begin{eqnarray}
2y + 3x & = & 13 \\
5y - 10 x & = & 15 \nonumber \\
y - 2x & = & 3
\end{eqnarray}

yields

2𝑦 + 3𝑥 = 13 (9.2)
5𝑦 − 10𝑥 = 15
𝑦 − 2𝑥 = 3 (9.3)

Since this is a table and the “=” sign forms a separate column, there are spaces
around it according to the settings in the \arraycolsep registry (see below);
by default it is 6 pt. If we want to adjust the spaces, we set, for example,
\arraycolsep=2pt, as recommended by one of the typographical rules, and we
get:

2𝑦 + 3𝑥 = 13 (9.4)
5𝑦 − 10𝑥 = 15
𝑦 − 2𝑥 = 3 (9.5)

In any of the mentioned environments, mathematical elements and symbols can be
applied in the same way with the following tools:

• Change typeface – math italics is on by default (italics without kerning); if neces-
sary (constants, etc.), the typeface can be switched with the command \mathrm,
\mathit, \mathbf, \mathsf (it is similar to working with typefaces in text, where
the relevant commands have the prefix \text instead of \math).

• The comma – is the separator in a list of values with additional spaces. Hence the
notation 1,2,3 gives 1, 2, 3. When writing a decimal number in Czech, however,
we cannot tolerate a space after the decimal comma, so we cannot simply write, for
example, 3,141, which leads to 3, 141. It is necessary to write 3{,}141 (printed as
3,141) where the parentheses around the comma enclose the inner empty list and
prevent unwanted whitespace.

• Exponent – is written with the character ^, e.g. c^2 yields 𝑐2 or x^{a+b} yields
𝑥𝑎+𝑏 .

• Index – written with an underscore, e.g. x_i gives 𝑥𝑖 or a_{ij} gives 𝑎𝑖𝑗 .

54

• Square root – command \sqrt{}, eg \sqrt{a+b} yields √𝑎 + 𝑏 or
\sqrt[3]{a^2+b^2} produces 3√𝑎2 + 𝑏2.

• Fraction – command \frac{numerator}{denominator}, eg \frac12 displays 1
2

or \frac{a+b}{c-d} yields 𝑎+𝑏
𝑐−𝑑 .

• The number of symbols, Greek and other letters, functions – are available using
the corresponding commands, an overview of which can be found in the literature
(e.g. Rybička, 2003).

• Sums, integrals, limits… – symbols with typesetting limits above and below the
symbol. They show the difference between text and display math.

Example: \sum_{i=1}^{n-1} a_i in text math yields ∑𝑛−1
𝑖=1 𝑎𝑖 and in display

math yields
𝑛−1
∑
𝑖=1

𝑎𝑖

The symbol for the integral works similarly \int, product \prod etc. We can
modify the implicit behavior with the command \limits, which always enforces
the typesetting of limits above and below the sign, respectively, with the command
\nolimits, which, on the other hand, forces the typesetting of limits next to the
sign:

$\sum \limits_{i=1}^{n-1} a_i$ inside the paragraph gives
𝑛−1
∑
𝑖=1

𝑎𝑖 and

$$\sum\nolimits_{i=1}^{n-1} a_i$$ in display math gives

∑𝑛−1
𝑖=1 𝑎𝑖 .

Limit \lim_{x\rightarrow\infty} \frac{2\tau}{\tau-3} is displayed as

lim𝑥→∞
2𝜏
𝜏 − 3 .

• Large delimiters – parentheses, vertical lines, and some other marks sometimes
need to be enlarged to properly surround the closed expression. Delimiters that
have the ability to grow in this way are then set with a special pair of \left and
\right commands. These commands must always be paired. If we don’t want a
delimiter on one side, we write it instead to the command \left or \right just a
dot. For example, \left\{\left[\frac{x^2}{\sqrt{x-2}}\right]\right.
produces

{[𝑥2
√𝑥 − 2]

• Text – we can use the command \mbox{}, the material in its parameter will be
typed as an ordinary one-line text. Example:
x + 2k^2 - y \leq 0 \quad \mbox{and from here}\quad y \geq x +
2k^2 gives

𝑥 + 2𝑘2 − 𝑦 ≤ 0 and from here 𝑦 ≥ 𝑥 + 2𝑘2.

55

• Arrays and other structures – much like the environment available in text tabular
(see later) for the typesetting of tables, array is available in the mathematical en-
vironment. All its options are identical to the tabular environment, including the
way of writing parameters and individual table fields. One of the few minor differ-
ences is the register that controls the inter-column spacing is called \arraycolsep
(in the tabular environment it is called \tabcolsep). For example

\left(
\begin{array}{r|ll}
a & b+c & 17 \\
b & a+c & 22 \\ \hline
c & a+b & 6
\end{array}
\right)

after processing yields

(
𝑎 𝑏 + 𝑐 17
𝑏 𝑎 + 𝑐 22
𝑐 𝑎 + 𝑏 6

)

• Notation of matrices and vectors – according to the rules, variables of these types
should be typeset with a bold shape. However, it is sometimes somewhat less suc-
cessful graphically when we use the command for common font change \mathbf.
There is an option to use the switch \boldmath used outside the math envi-
ronment, which orders everything to be bolded. We can compare, for example,
\boldmatha (typeset as 𝑎) and \mathbf{a} (is output as a). The following
definitions may be a useful aid:
\def\mbf#1{\mbox{\boldmath$#1$}}
\def\mbfs#1{\mbox{\scriptsize\boldmath$#1$}}
and their use:

In physics we can often meet with the expression
$\mathrm{e}^{-i\mbfs{k}t}$.

The angle α of two vectors \mbf{u} and \mbf{v} is
defined by the following expression:
$$\alpha=\arccos\frac{\mbf{u}\cdot\mbf{v}}%

{\Vert\mbf{u}\Vert\cdot\Vert\mbf{v}\Vert}
$$

After compiling we get:
In physics we can often meet with the expression e−𝑖𝑘𝑡 . The angle 𝛼 of two vectors
𝑢 and 𝑣 is defined by the following expression:

𝛼 = arccos
𝑢 ⋅ 𝑣

‖𝑢‖ ⋅ ‖𝑣‖

56

9.2 Inserting of expressions into the document,
references

As already mentioned, mathematical expressions can be in paragraph text or in displayed
form. The displayed form has a uniform shape: the expression is indented in the center
and, if necessary, numbers are given on the right margin. The equation counter is pre-
defined for expressions numbering and we can on the one hand influence the way it is
written and on the other hand it can serve as a reference.

Example: We will use the command \label in the expression and we then refer to
the defined label with the command \ref and \pageref

\begin{equation}
\mbox{Area} = \left[\frac{f(A)+f(B)}{2}+

\sum_{i=1}^{N-1} f(x_i)\right]\cdot \Delta x
\label{trapezoids}
\end{equation}
Numeric integration of the function f on the interval
$\langle A, B\rangle$ we can do by computing the expression
\ref{trapezoids} on the page \pageref{trapezoids}.

After typesetting we get:

Area = [𝑓 (𝐴) + 𝑓 (𝐵)
2 +

𝑁−1
∑
𝑖=1

𝑓 (𝑥𝑖)] ⋅ Δ𝑥 (9.6)

Numeric integration of the function 𝑓 on the interval ⟨𝐴, 𝐵⟩ we can do by computing the
expression 9.6 on the page 57.

For practice:

Ex. 9.1:

𝑃 =
𝑛
∑
𝑖=1

𝑔(𝐴 + 𝑖𝑘) (9.7)

Ex. 9.2:

𝑦 = [𝑥(𝑥
2 − 1)

𝑥 + 1 − 𝑥 + 1
𝑥(𝑥 − 1)2]

3

Ex. 9.3:

𝐶 ≤ 2𝑁 (9.8)
log𝐶 ≤ 𝑁 log 2

𝑁 = ⎡⎢⎢
log𝐶
log 2

⎤⎥⎥
(9.9)

Ex. 9.4:
success rate = number of correct answers

number of examples entered

57

Ex. 9.5:
limΔ𝑥→0

𝑓 (𝑥) − 𝑓 (𝑥 + Δ𝑥)
Δ𝑥

Ex. 9.6:

discontinuous function 𝑔(𝜉) = {
0 pro 𝜉 < 0
2𝜉 pro 𝜉 ∈ (0, 1)
2 pro 𝜉 ≤ 1

Ex. 9.7:
transfer matrix: [𝛼11 𝛽12

𝛾21 𝛿22] (9.10)

58

Chapter 10 59

Tables

Tabular and sequential typesetting solves the problem of vertical alignment of document
elements. Since, in contrast to typewriting, the width of each character is different in
typesetting, the rather simplified principle cannot be used – inserting strokes to achieve
the intended dimensional effect. While a typewriter stroke is a unit of length that was
normalized to 1/10” on typewriters and could be used to measure any text, in typesetting
we have to use completely different means. They are usually quite tightly connected to
the technology used and we can divide them into two groups: tab stops and tables.

10.1 Table types
There are open tables, when the data is placed in columns usually completely without
vertical delimiting lines, the header row of the table and the bottom (total) row are then
separated by horizontal lines. Tables of this type are suitable for simpler cases and smaller
amounts of data. In some cases, tabulation stops can be used for their implementation.

So called closed tables have individual fields delimited by lines, which can be double-
thick to indicate a more complex structure (blocks of columns).

Fields or larger units in a table can be highlighted with a background color, with or
without border lines.

10.2 Ways to align tabular data

The tabbing environment

It is about implementing the principle of tab stops. The most important elements are the
statement to set the tab stop and the statement to use the position of the tab stop. The
space between tabulation stops automatically forms a separate group, all possible settings
of typefaces, etc. apply only to the extent of one field.

Example
tabbing environment example

\begin{tabbing}
\bfseries City \hspace{30mm} \= % setting tab stop
\bfseries Temperature at 7 AM \\[5pt]
Philadelphia \> 17.5$^\circ$ C \\ % the use of tab stop
New York \> 16.8$^\circ$ C \\
Washington \> 15.9\=$^\circ$ C \\ % setting second tab stop
\> \> uncalibrated scale \\
Boston \> 19.5$^\circ$ C
\end{tabbing}

After typesetting we get:

City Temperature at 7 AM

Philadelphia 17.5∘ C
New York 16.8∘ C
Washington 15.9∘ C

uncalibrated scale
Boston 19.5∘ C

The tabular environment

Tables in this environment have various interesting possibilities. Compared to interactive
programs, working with tables is quite different, some cases are quite difficult, but on the
other hand, there are a number of tools that allow you to automate typesetting, and thus
significantly simplify work for common cases.

We will show a few examples from the wide repertoire of possibilities.
Basic table form

\begin{tabular}[vertical position]{column definition} \hline
field & field & ... \\ \hline
...
field & field & ... \\ \hline
\endtabular

vertical position – indicates the position relative to the surroundings. Implicitly, the table
is placed vertically in the center to the surroundings, by entering this parameter
in the form of the letter b the table is placed at the bottom edge, with the letter t
upper edge relative to the surroundings.

column definition – a sequence of characters symbolically representing table columns,
their alignment, and the material of the inter-column space. Letters l, c, r means
left, center, and right aligned column respectively. Notation p{measure} means
a justified column of width measure. The vertical line represents the inter-column
space filled with a vertical line. Command @{...} allows you to define the material
of the inter-column space, which will automatically be repeated in each row.

field – a table field is a separate group with any one-row material.
Simple table example

\begin{tabular}{rc}
\bfseries Points & \bfseries Grade \\[5pt]
$<$50 & insufficient \\
50--69 & good \\
70--89 & very good \\
90--100& excellent
\end{tabular}

After processing we get:

60

Points Grade

<50 insufficient
50–69 good
70–89 very good

90–100 excellent
In the following table, we show the two necessary props – the merging of the table

fields and the two alignment methods.
If we need span a table field over several others, we use the command

\multicolumn{number}{alignment}{text}.
This command allows you to define a different way of alignment and inter-column

materials in the newly created merged field. Therefore, it can also be used to simply re-
define the alignment method and inter-column material of a given field without merging
multiple fields.

The correct vertical alignment of the material of the table fields is a very essential
element, especially for numerical values. The numerical values must be aligned so that
the same decimals are below each other. This is not completely trivial for values with
different numbers of digits.

Two alignment methods are shown in the example. One consists of splitting into
two columns (shown on the “score” column). The second method shown in the “points”
column pads each value with an extra space of the same width, the column can then
be centered. The command \hphantom{0} provides a space that is exactly equal to the
width of the digit and for better readability and usability, we defined this space with a
shorter command \fm.

Table with border
\def\fm{\hphantom{0}}
\begin{tabular}{|r||l|r@{:}r|c|} \hline
\bfseries O. & \bfseries Country &
\multicolumn{2}{c|}{\bfseries Score} &
\bfseries Points \\\hline\hline
1. & Italy & 23 & 4 & 14\\\hline
2. & France & 18 & 7 & 10 \\\hline
3. & Sweden & 14 & 10 & \fm 8 \\\hline
4. & Switzerland & 3 & 18 & \fm 3 \\\hline
\end{tabular}

After typesetting we get:
O. Country Score Points
1. Italy 23: 4 14
2. France 18: 7 10
3. Sweden 14: 10 8
4. Switzerland 3: 18 3

Influencing the row spacing in the table can be done by redefining the \arraystretch
coefficient, for example \def\arraystretch{1.4}. The size of the inter-column space
can be influenced by the value of the registry \tabcolsep, whose default value is 6 pt.

61

We modified the previous table by setting
\def\arraystretch{1.3} \tabcolsep=15pt and we get:

O. Country Score Points

1. Italy 23: 4 14
2. France 18: 7 10
3. Sweden 14: 10 8
4. Switzerland 3: 18 3

To practice the table typesetting, we recommend do following tasks:

For practice:

Ex. 10.1: Using the tabbing environment typeset:

procedure Number(var C: longint);
var R: string;
Position: byte;
begin Position:=5;

while not eof do begin
readln(R);
writeln(C: Position, ’–’, R)

end
end;

Ex. 10.2: Typeset a small multiplication table.
Ex. 10.3: Typeset your personal timetable.

10.3 Inserting tables into document
Tables are an essential element in professional documents and need additional props for
their inclusion. Each table should have its own label, and inserting a table greatly reduces
the possibility of page breaks. Both problems are solved by the table environment and
inside it the command \caption.

Environment table is a so-called floating environment. It means that the resulting
document may have in a different place than in the source text. The page build algorithm
makes it possible to detect that the content of the environment no longer fits on the
current page, store the material of the entire environment in memory and dump it only
after switching to a new page (or even later). We will avoid all kinds of empty spaces
resulting from missing tables in a given place.

In most cases, the floating environment has a positive effect on the efficiency of cre-
ating a precise document. However, there are cases when the general algorithm is not
suitable for solving a more complicated situation, then there may be a variant that the
floating environment cannot be placed sensibly and all the tables are “summarized” at the
end of the chapter or the end of the document. Then comes the somewhat more demand-
ing “manual” work of adjusting the predefined parameters of the placement algorithm,
or even leaving floating environments and typesetting in another way.

62

Example: Optional parameter of table environment is a sequence of letters helping
the embedding algorithm. The order of the letters determines the desired priorities. The
letter h says that the first thing to try is to place the table exactly where it is in the source
text. If it doesn’t fit, then the t instruction starts, which is the placement on the top of
this or next page. Analogously b is this or next page bottom part and finally p is placed
on a completely separate page. We will always use this specification if it is a larger table,
for which we know in advance that it will not fit in common places.

Floating environment example
\begin{table}[htbp]
\caption{Group C standings after ten contestes played}

\begin{tabular}{|r||l|r@{:}r|c|} \hline
\bfseries O. & \bfseries Country &
\multicolumn{2}{c|}{\bfseries Score} &
\bfseries Points \\\hline\hline
1. & Italy & 23 & 4 & 14\\\hline
2. & France & 18 & 7 & 10 \\\hline
3. & Sweden & 14 & 10 & \fm 8 \\\hline
4. & Switzerland & 3 & 18 & \fm 3 \\\hline
\end{tabular}
\end{table}

Tab. 10.1: Group C standings after ten contestes played

O. Country Score Points

1. Italy 23: 4 14
2. France 18: 7 10
3. Sweden 14: 10 8
4. Switzerland 3: 18 3

With the table environment a counter of the same name indicating the current ta-
ble number is connected. Its value is updated with the command \caption If it is not
specified for a table, the table is not counted. By placing the command \label{...}
inside the command \caption{...} or behind it within the table environment cre-
ates a link that can be used with \ref{...} commands or \pageref{...} similarly
to the case of equations. The table caption is also automatically inserted into the con-
tent file with the extension .lot and allows creating a list of tables with the command
\listoftables.

63

64 Chapter 11

Image material and graphics

In professional documents (and not only in them) the presence of various graphic ele-
ments is absolutely indispensable. These are often various schemes, drawings, graphs,
diagrams, but also photos, drawings, illustrations or elements affecting the aesthetic level
of the entire document – ornaments, lines, etc.

11.1 Types of images and their sources
A text processing system such as XƎLATEXis not primarily intended for the creation and
processing of image information. It is therefore quite natural that the image elements
come from some other software – a graphic editor capable of any modifications. The
resulting edited image is then transferred to the document in the form of a computer file
of a precisely specified graphic format and incorporated in a suitable place. At this point,
some simple adjustments can still be made, such as resizing (detailed adaptation to the
given location) or clipping.

Computer graphics are generally available in two different qualitatively quite dif-
ferent forms – raster and vector. Without going into details, let’s just remind you that
raster graphics as a collection of elementary points (pixels) are used mainly for photos
and drawings, their quality is fundamentally dependent on the character of the output
device (especially on the possibilities of displaying a certain density) and it has great lim-
itations in terms of editing and modification options. On the other hand, vector graphics
defined as a sequence of image objects can always be displayed in maximum quality and
also provides a wider repertoire of editing actions that do not affect the output quality,
which is, of course, balanced by far more complicated processing procedures.

It directly follows that different technical forms are also suitable for different types
of visual information, and it is a big mistake to use raster technology for diagrams and
graphs, for example. If we are working with a system whose principles include a signif-
icant effort for quality output, it is necessary to project this effort into the sources from
which we take image information.

The insertion of graphic information into the document is made possible by the fact
that the output format of the document (PDF) is composed of the typesetting solved using
the TEXu tools and the content of the inserted graphic file. At the time of typesetting,
the TEX translator (and all extensions) has no information about what is in the image
file, it just inserts the rectangle as if it were a letter. So the only information lies in the
dimensions of this rectangle. Only after the entire typesetting is done, the real content
of the inserted files is inserted into the prepared rectangles and the result is converted to
PDF format.

In earlier times, when the output format after translation by the TEX translator was
by default DVI (DeVice Independent), graphics were solved only with tools equivalent to

working with fonts. Certain remnants of these technologies can still be used today, but
they do not constitute the majority way of working with graphics as it was in the past.

With the development of output to PostScript and later PDF formats, the palette of
options for working with graphics also expanded to include the ability to control the out-
put driver using commands in the source text, i.e. control the PostScript language inter-
preter or the PDF format viewer. Internally, this is arranged by the command \special,
which the compiler just forwards to the output, and there it is processed by the display
program.

Very extensive packages with almost unlimited possibilities for creating graphic el-
ements are based on this principle: PSTricks (to PostScript output format), PDFTricks
(similar to PDF output format), TikZ (PDF output) and the METAPOST specialty that
additionally uses Knuth’s language for defining METAFONT fonts. The descriptions and
capabilities of the mentioned tools go far beyond the scope of this text, so we will not
discuss them further.

In the field of raster graphics, there are a plethora of file formats available, each with
certain specific characteristics. JPEG and PNG raster files can be inserted into a XƎLATEX
document, which are widely available and widely used alternatives to which a variety of
other formats can be converted in image editors. It can be said that these two formats
practically cover the entire area of all raster information.

Vector formats are represented by two variants – the Adobe PostScript format (in-
cluding its single-page Encapsulated PostScript form) and the PDF format. Since Adobe
PDF is a kind of ideological clone (perhaps even a successor) of the more general concept
of the PostScript format, it is natural that it is a completely native part of the output form
of the document, which is also produced by default in the PDF format.

Implementation in the XƎLATEX system
The graphicx package is used to work with image information (its older form graphics
can also be used, which provides a completely different way of working with optional
parameters).

The command
\includegraphics[options]{file}

provides the insertion of an image file into the document. In its basic form, the
specified file is inserted into the given location of the document; a rectangular space is
created, the dimensions of which are read from the graphic file (bounding box). The
bottom edge of the rectangle is placed on the line of the current typesetting point.

An optional parameter can include a sequence of specifications in the form key =
value; these specifications are separated by commas. We will list some of them for illus-
tration – more detailed information can be found in the complete documentation for the
given package.

A big advantage over the usual approach of other systems is the possibility to set
dimensional adjustments according to the values of own and predefined length registers.
For example, an image can always be automatically adjusted to the width of a column, its
height can be 2/3 of a page, etc. For inserting images and editing graphic elements, you
can create corresponding custom commands, which then ensure the complete identity
of the visual form throughout the document and significantly facilitate typesetting and

65

subsequent editing. In case of any need for overall modification of the document (format
change), all objects are automatically adapted to the new situation.

Selected options for editing the embedded image in the optional parameter:

width – allows you to set the width of the inserted rectangle (transforms embedded file).
The height of the rectangle changes proportionally, unless otherwise specified.

height – allows you to set the height of the inserted rectangle.

viewport – a part of the image specified by relative coordinates in the image rectangle.
It is written as four values: the coordinates of the lower left corner of the viewport
and the coordinates of the upper right corner. This will affect the size at which the
rate will be calculated, but the image will be displayed in its entirety. Therefore, if
the viewport is smaller than the original rectangle, some parts of the image may
overlap the surrounding material.

trim – similar to viewport, but the four values specify how many points are cut (and
added when negative) from the left, bottom, right, and top sides of the rectangle.

clip – crops the view to the set rectangle. Suitable in combination with viewport or trim.

angle – rotates the image rectangle (including content) by the appropriate angle coun-
terclockwise.

origin – center point of rotation. It is entered as a letter (or a combination thereof)
specifying one of the reference points: l (left), r (right), b (bottom), t (top), c (center).

scale – rescaling the image. The magnification/reduction coefficient is entered, which is
used to multiply the original dimensions of the image.

draft – does not insert the file, but only displays the rectangle in which the graphic
should be placed. It significantly reduces the size of the output file and speeds up
translation.

Examples: Suppose we have an image in the file a.pdf that has a rectangle size of
10 × 15 mm.

• insertion without transformations:
\includegraphics {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut —
R

— vitae
consectetuer ut egestas enim dapibus
mollis.

• embed without graphic data (suitable for
debugging):
\includegraphics[draft] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut —

a.pdf

— vitae
consectetuer ut egestas enim dapibus
mollis.

66

• inset with a change in width, the height
will be adjusted proportionally to the
original dimensions of the image:
\includegraphics[width=7mm]

{a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut —R — vitae
consectetuer ut egestas enim dapibus
mollis.

• inset with a change in height, the width
will be adjusted proportionally to the
original dimensions of the image:
\includegraphics[height=10mm]

{a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut —R — vitae
consectetuer ut egestas enim dapibus
mollis.

• insertion with change of width and height:
\includegraphics[width=15mm,

height=10mm] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut —R — vitae
consectetuer ut egestas enim dapibus
mollis.

• viewport (i.e. mutual displacement of the
embedded graphic and the rectangle):
\includegraphics[viewport=10 10 50

60] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut —R — vitae
consectetuer ut egestas enim dapibus
mollis.

• viewport and crop the view to new
dimensions:
\includegraphics[viewport=10 10 50

60, clip] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut —R — vitae
consectetuer ut egestas enim dapibus
mollis.

• crop, a negative value increases the
dimension:
\includegraphics[trim=-10 10 20

15] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut — R— vitae
consectetuer ut egestas enim dapibus
mollis.

• crop and display to new dimensions:
\includegraphics[trim=-10 10 20

15, clip] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut — R— vitae
consectetuer ut egestas enim dapibus
mollis.

67

• normal trim – positive values:
\includegraphics[trim=5 5 10 10,

clip] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut —R— vitae consectetuer
ut egestas enim dapibus mollis.

• image rotation by 45°:
\includegraphics[angle=45] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut — R — vitae
consectetuer ut egestas enim dapibus
mollis.

• rotation and adjustment of the resulting
height:
\includegraphics[angle=90,

height=10mm] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut — R — vitae
consectetuer ut egestas enim dapibus
mollis.

• height adjustment and subsequent
rotation; here and in the previous example
it can be seen that the parameters are
processed and applied in the order in which
they were written:
\includegraphics[height=10mm,

angle=90] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut — R — vitae
consectetuer ut egestas enim dapibus
mollis.

• rotation according to the center point on
the lower edge of the image, adjusting the
height above the line to 10 mm:
\includegraphics[origin=bc,

angle=90, height=10mm] {a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis
tellus tempus ut

— R — vitae

consectetuer ut egestas enim dapibus
mollis.

• rotation as in the previous example, but
the height adjustment applies to the total
size of the image, not just the part that is
above the baseline:
\includegraphics[origin=bc,

angle=90, totalheight=10mm]
{a.pdf}

Lorem ipsum dolor sit amet consectetuer
pretium lorem eget hac metus. Facilisis

tellus tempus ut — R — vitae

consectetuer ut egestas enim dapibus
mollis.

68

11.2 Graphic elements in the document
As the graphic elements we can supposee a wide range of different props, which can be
divided into several groups. We especially notice elements inserted from special fonts
and elements created by graphic operations.

11.2.1 Special fonts characters

Ornaments formed by special characters of a certain font are one of the simplest graphic
props. These include, for example, visual separators of logical units (end of chapter mark,
etc.), decorative initials, warning signs, link symbols, etc. Since this is the same operation
as inserting ordinary text, these elements do not require any special tools, work in any
situation and in each compiler configuration and output format.

Characters can be colored in cooperation with the color system (already mentioned),
which opens up more possibilities for their use.

Examples:

• Decorative initial, font yinit.otf (author
Yannis Haralambous): L orem ipsum dolor sit amet

consectetuer pretium lorem eget hac
metus. Facilisis tellus tempus ut...

• Scissors symbol, free font Ozdoby.otf:

Lorem ipsum dolor sit amet
consectetuer pretium lorem eget hac
metus.

r . Cut here . r

Facilisis tellus tempus ut vitae
consectetuer ut egestas enim dapibus
mollis.

• Decorative logical unit separator
(character from the wingdings font):

Lorem ipsum dolor sit amet
consectetuer pretium lorem eget hac
metus.

Facilisis tellus tempus ut vitae
consectetuer ut egestas enim dapibus
mollis.

11.2.2 Typesetting elements and operations with them

In this section, we will deal with lines, rectangular (colored) areas, various frames and
their transformations and arrangements.

For this we will need at least a cursory look into the “kitchen” of the typesetting
machine – we will look at the basic principle of how this machine works and what ele-
mentary operations it has.

69

11.2.3 Typesetting principle and TEX modes

In principle, the method of typesetting is very simple: rectangular frames (boxes) rep-
resenting individual letters are gradually folded one after the other, possible spaces are
inserted between them – empty spaces (glue) and even a third element – the so-called
penalty, i.e. some kind of auxiliary information influencing the decision on the further
progress of the rate.

At the time of typesetting, the typesetting machine doesn’t really care what the
graphic look of the move hidden inside the box is, it only cares about the geometry – the
reference point, width, height and depth of the frame. The reference point is implicitly
placed on the baseline just behind the previous box. A description of the box and an
example of the typesetting of one word as seen by the typesetting machine is shown in
Fig. 11.1.

height

depth

width

ref. point

heightg
Figure 11.1: Box description and basic typesetting method

In addition to the boxes formed by the individual characters of the given font, there
are other boxes, and we can also create them. A box is a typeset line after the completion
of a line break in a paragraph, a box is a typeset paragraph and a typeset page. A box is
also a table or embedded image. In addition, we can create our own boxes:

• LR (left-to-right) box – created with the command \makebox or its simplified ver-
sion \mbox,

• paragraph box – created with the command \parbox or with environment
minipage,

• rule box – created with the command \rule.

The TEX system works with typesetting boxes in a six different modes. Now it will
be clearer how the typesetting machine behaves and why some commands work in some
places and not in others:

1. Main vertical mode – the situation when the typesetting is between paragraphs and
vertical page alignment and page breaks are handled here, among other things. For
example, \vspace or bigskip commands work here.

2. The main horizontal mode – the typesetting is located inside the paragraph and, in
addition to its own lines, possible alignment (justify, center, right) and line breaks
are solved here. For example, \hspace or \dotfill commands work here.

70

3. Restricted horizontal mode – work in a single-line box (for example, a table field).
This is the base typesetting without handling alignment and line breaks.

4. Restricted vertical mode – work in the so-called vertical box, where there is no
page break (table, floating environment).

5. Text math mode (see description of math environments).

6. Display math mode (see description of math environments).

Sometimes it is important to know how to switch between individual modes, or to
force this switch with the corresponding command.

The switch from the main vertical to the main horizontal mode is done by writing
some character (this is assumed to be the beginning of a new paragraph) or by the com-
mands \noindent – starts a new paragraph and at the same time cancels any paragraph
special indent; \indent – starts a new paragraph including special indent; \leavevmode
– exits vertical mode but takes no further action.

The easiest way to switch back from the main horizontal mode to the main vertical
mode is with an empty line (ends the paragraph), or with the command \par. Some
environments do the same (e.g. center).

Restricted modes arise in boxes. Transitions to and from mathematical modes ensure
the boundaries of all mathematical environments, as already mentioned in the relevant
chapter.

11.2.4 Boxes

In the following overview, we will present the options for creating your own boxes. Their
practical use offers interesting possibilities and often effective props.

1. LR boxes – their content is single-line material typed in a restricted horizontal
mode (without the possibility of line breaks). They are created by command

\makebox[width][position]{text},

where the first optional parameter defines the resulting width of the box, the sec-
ond optional parameter the desired position of the content inside the box (letter
l – left, r – right, the default location is centered) and the mandatory parameter
contains the own one-line material. What can it be used for? The command is
interesting with all the parameters: by specifying the width, we determine how
the box should behave towards its surroundings, whatever its content is – we can
pretend that the content has a smaller overall width (even zero, for example), or
a larger width that will be filled with a space. The way the content is placed then
determines where the potential gap will be or on which side the content will be
“pushed” out of the box and will not be included in the surrounding typesetting.
Prohibiting line breaks in the box material is also very useful in some cases. One
common use case is tabular typesetting. Suppose we have a centered column of
numeric values that we know must be aligned with the same order below each
other. However, if the values are equipped with some other characters (referenc-
ing asterisk, plus or minus sign, etc.), they cannot be accepted during alignment,

71

because they would move the value to an unwanted position. The solution is a
zero-width box whose content is the appropriate character:

Simple centering:
Yield
[k€] (Source text:)

18,5 18,5
−11,9 $-$11,9
16,3* 16,3*

…
* Moving average

Centering with character treatment:
Yield
[k€] (Source text:)

18,5 18,5
−11,9 \makebox[0pt][r]{$-$}11,9

16,3* 16,3\makebox[0pt][l]{*}
…

* Moving average

The second example of use is to create a table with the required column width.
Headings are made up of boxes that have a specified width (22 mm for First Name,
32 mm for Surname and 40 mm for Signature):

Attendance List
No. First Name Surname Signature

If we only need to disable line breaks in a certain part of text and do not want to
manipulate the resulting width of the box, we can use the shortened command

\mbox{text}.

In addition, when used in a mathematical environment, its property will be re-
flected – plain text type, using the font set before the math environment.

2. Box framing – a frame can be applied around the box with the LATEX command

\framebox[width][position]{text}

or a shortened version

\fbox{text}.

It is analogous to the commands \makebox, or \mbox, the parameter meanings
are identical. A border is created around the box with a line thickness in the
\fboxrule registry and the distance of the line from the contents of the box is
used from the register \fboxsep. Both registers can be set to the desired dimen-
sions without restriction.

3. Rule boxes – these are rectangular areas filled with ink. The basic universal com-
mand of the LATEX/XƎLATEX system for creating a rule is the command

\rule[raise]{width}{height}.

72

Its optional parameter indicates the position of the bottom edge relative to the base-
line (positive values are up, negative values are down), default is zero. Example:
\rule{20mm}{0.5pt}\rule{10pt}{1em}\rule[0.7em]{20mm}{0.5pt}%
\rule[-0.5em]{2pt}{1.5em}
yields:

In addition to the mentioned command, variants of TEX can also be used: com-
mands \vrule and \hrule. They implicitly create a line with a thickness of 0.4
pt and the font size (\vrule), respectively about typesetting width (\hrule – in
vertical mode only). If we would like to influence their implicit dimensions, we can
use the keywords width, height and depth, for example:
\vrule width 1pt depth 5pt yields ;
\hrule width .3\linewidth height 1pt depth 1pt yields:
Line boxes with zero width (so called struts) are widely used. They are invisible,
but can be used wherever it is necessary to increase the space derived from the
size of the text – in tables, in mathematical expressions, sometimes even inside
paragraphs. Examples:
Increase the distance of the text from the bounding lines in the table:
\begin{tabular}[t]{|l|c|} \hline
Method: & \begin{tabular}[t]{@{}l@{}}

a) initialization\\
b) values inserting\\
c) sorting
\end{tabular} \\\hline

Properties: & stability \\
& sequentiality \\ \hline

\end{tabular}

\def\hstrut{\vrule height 1.2em
width 0pt}

\def\dstrut{\vrule depth 0.8em
width 0pt}

\begin{tabular}[t]{|l|c|} \hline
Method: & \begin{tabular}[t]{@{}l@{}}

a) \hstrut initialization\\
b) values inserting\\
c) \dstrut sorting

\end{tabular} \\\hline
Properties: & \hstrut stability \\

& \dstrut sequentiality \\
\hline

\end{tabular}

Method: a) initializing
b) values inserting
c) sorting

Properties: stability
sequentiality

Method: a) initializing
b) values inserting
c) sorting

Properties: stability
sequentiality

Improving readability of mathematical expression:
\def\hstrut{\vrule height 1.1em width 0pt}
\def\mstrut{\vrule height 0.75em depth 0.3em width 0pt}
\def\dstrut{\vrule depth 0.5em width 0pt}
$\sqrt{2} \frac{2}{\sqrt{a^2}}$ \qquad
$\sqrt{\mstrut 2} \frac{2}{\hstrut\sqrt{\mstrut a^2}}$

√2 2
√𝑎2 √2

2

√𝑎2

4. Paragraph boxes – their content is in restricted vertical mode, line breaks are al-
lowed, but not page breaks. A command available in LATEX/XƎLATEX is

\parbox[ref. point]{width}{material}

73

or environment

\begin{minipage}[ref. point]{width}.

The position of the reference point in the optional parameter is set by the letter t
(top) = baseline of the first line of the box content or b (bottom) = bottom edge of
the box. By default, it is in the vertical center.
Mandatory parameter specifying width determines the width of the content of the
box, by default it is justified. With the command \raggedright, \raggedleft
or \centering inside the box, the alignment can be adjusted to the left, right or
center.
Environment minipage behaves identically, its advantage is a different delimita-
tion of the contents of the box, which can be divided for example into two macros
(start part, end part), while \parbox must always be specified in its entirety inside
the one macro.
The use of paragraph boxes is wide. They significantly expand the possibilities of
tables (the table field can be in the form of a paragraph), but also allow different
composition of elements, for example, two images with captions next to each other,
keeping the material on the same page (no page break), etc.
Example of a table with three equally wide columns with paragraph content:

Table with paragraph fields
\def\tabf#1{\parbox[t]{.25\linewidth}{\raggedright #1}}
\begin{tabular}{|l|l|l|} \hline
\tabf{\bfseries Lorem ipsum dolor sit amet consectetuer Cum.} &
\tabf{Condimentum ligula ante Phasellus lacinia ut Integer
Vestibulum Mauris lacinia Nullam. Justo orci dolor justo.} &
\tabf{In molestie mauris vel non volutpat faucibus et magnis
id netus sit nunc. Euismod quis Vestibulum.} \\ \hline
\tabf{\bfseries Condimentum ligula ante Phasellus} &
\tabf{Lorem ipsum dolor sit consectetuer. Cum lacinia ut Integer
Vestibulum Mauris lacinia Nullam. Justo orci dolor justo.} &
\tabf{In molestie mauris vel non volutpat faucibus et magnis
id netus sit nunc. Euismod quis Vestibulum.} \\ \hline
\end{tabular}

After compilation we get:

74

Lorem ipsum dolor
sit amet
consectetuer Cum.

Condimentum
ligula ante
Phasellus lacinia ut
Integer Vestibulum
Mauris lacinia
Nullam. Justo orci
dolor justo.

In molestie mauris
vel non volutpat
faucibus et magnis
id netus sit nunc.
Euismod quis
Vestibulum.

Condimentum
ligula ante
Phasellus

Lorem ipsum dolor
sit consectetuer.
Cum lacinia ut
Integer Vestibulum
Mauris lacinia
Nullam. Justo orci
dolor justo.

In molestie mauris
vel non volutpat
faucibus et magnis
id netus sit nunc.
Euismod quis
Vestibulum.

5. Basic TEXcommands for boxes – they work in all cases, this is the command
\hbox{content}, or \hbox to measure{content} for restricted horizontal
mode and command \vbox, respectively \vbox to measure{content} for re-
stricted vertical mode.

11.2.5 Affecting the base typesetting method

As already mentioned, the basic typesetting method consists of setting consecutive boxes
one after together with reference points on the baseline. In addition, spaces can be in-
serted (already mentioned in several places) and penalties affecting the line break algo-
rithm. This activity can be influenced by the following commands:

• The next box will not be right behind the previous one, but will be shifted horizon-
tally – command

\kern measure

If the measure is negative, the next box is inserted over the content of the previous
box. It is a command that explicitly solves the so-called kerning, but it can be used
for any other similar purpose.
Example: Source code error\kern-5.5ex{}/////// gets error///////

• The box will not be placed on the baseline with its reference point, but above/below
– in the LATEX/XeLaTeX system the command

\raisebox{raise}[height][depth]{text}

A LR box will be created with the given text, whose reference point will be posi-
tioned according to the raise parameter (positive values indicate the direction up,
negative values down). The total height and depth of the resulting box can then
be affected by the corresponding optional parameters. So, for example, it can be
pretended that even if something is increased/decreased, it should not be included
in the total height/depth of the line by its natural size, but by some other (bigger,
even smaller or zero).

75

Examples: Consider two definitions of command \th:
1. \def\th{\raisebox{.5em}{\scriptsize th}}
2. \def\th{\raisebox{.5em}[0pt]{\scriptsize th}}
We will use them in the same material and observe what results we get:
... It was presented as a 15\th{} contribution in
the 4\th{} section.
Definition 1 (broken line
spacing):
Part of the design management
of the large track. It was
presented as a 15th contribution
in the 4th section.

Definition 2 (balanced line
spacing):
Part of the design management
of the large track. It was
presented as a 15th contribution
in the 4th section.

• Affecting line breaks – very often we need different kinds of solid spaces (1/4 em,
1/6 em), which we can define as a regular space of the given size, but with a
“penalty” for the line break at that point. If we want to completely disable the
break, we set this penalty with the command \penalty to the highest possible
value, i.e. 10,000.
Examples:
– Solid space 1/4 em: \def\,{\penalty10000\hspace{0.25em}}, we will use
it, for example, in conjunction Dr.\,Stark – Dr. Stark
– Solid space 1/6 em: \def\;{\penalty10000\hspace{0.1667em}}, we will use
it to space the ellipsis \dots\;and yet it spins! – … and yet it spins!

11.2.6 Graphics operations

The same operations can be performed with any box (with graphicx package), the effect
of which is also incorporated into the given command for inserting a graphic file. It’s
resizing, mirroring and rotating. The following commands are available:

• \scalebox{scale-x}[scale-y]{content} – command scales its single-line content
by a factor of scale-x. If the optional parameter is not specified, this scale is also
used in the 𝑦 axis and the scaling is proportional to the original size ratio. Exam-
ples:

\scalebox{3}{\&} – &
\scalebox{3}[1]{\&} –&

• \reflectbox{content} – the command performs mirroring in the 𝑥 axis, for ex-
ample
\reflectbox{\&} – &. The same effect can be achieved by writing
\scalebox{-1}[1]{\&}. It also follows that we write the mirroring in the 𝑦 axis
(and at the same time the change in size), for example: \scalebox{2}[-2]{\&}
– &

• \resizebox{dimension-x}{dimension-y}{content} – command to resize to ap-
propriate dimensions in both axes. If we don’t want a disproportionate change,
we write only the dimension in one axis and instead of the second dimension just

76

the character !. Dimensional values can of course be written using length regis-
ters and coefficients when we need for example to adjust table to typeset width.
Examples:

\resizebox{2.5em}{!}{\&} –&
\resizebox{2em}{3\baselineskip}{\&} – &

• \rotatebox[parameters]{angle}{content} – command rotates the content by the
specified angle. The angle is implicitly in degrees and the rotation is counterclock-
wise. Optional parameters are written similarly to inserting images in the form
key=value and can be the following options:
origin=center of rotation – given as one or two letters from the list: lrctbB in the
usual meanings (l – left, etc.). The letter B stands for baseline.
x=dimension, y=dimension – determining the center of rotation using relative co-
ordinates from the current reference point.
units=number – allows two settings: the number −360 changes the direction of
rotation, the number 6.283185 changes degrees to radians (= 2π). Examples:

\rotatebox{90}{...y...} – ...y
...

\rotatebox[origin=t]{90}{...y...} – ...y
...

\rotatebox[x=0.9\width, y=0.9\height]{90}{...y...} –

...y
...

\rotatebox[units=-360]{90}{...y...} –

...y...

11.3 Inserting images in a document
The floating environment figure is used to include images (or any other named object)
in the document. It is (except for the name) identical in behavior to the already described
environment table. It forms its own series of floating objects that can be alternate with
the tables, but the order of the objects themselves figure remains the same as the order
in the source text. The command \caption may also appear here with the label, the
environment has its default counter figure and can be saved into labels and used in
cross-references. Similar to the table environment you can create a list of figures with
the command \listoffigures.

11.4 Creating pictures in the system – environment
picture

In some simpler cases, we don’t need to rely on graphic operations handled by the output
driver or some external image editor, but we can create an image using text tools working
on the same principle as normal paragraph text – inserting characters of a certain font at
the typeface position.

77

This purpose is served by the special system environment LATEX/XƎLATEX picture.
The basic idea is to compose selected image components from characters of special fonts,
namely at positions given by coordinates on the specified desktop. Since there cannot be
an infinite number of elemental elements in fonts, there are some restrictions on shapes,
slopes and sizes in some cases, but still the common needs of simple graphics are covered.
In addition, the very principle of arbitrary placement of the “typesetting point” can be
used, thus achieving effects unavailable with other tools.

All dimensions written in this environment and in its individual commands are en-
tered as relative values multiplied by the value in the length register \unitlength. Its
default value is 1 pt.

Environment exception picture it is also emphasized by a slightly different syntax.
The entries of coordinates and some dimensions are surrounded by round brackets, but
the principle of optional parameters in square brackets and other mandatory parameters
in brackets remains.

We will briefly describe the basic features and options using a short example:

m m
}

'

&

$

%
RAIL ROAD

������

������HHHHHH

HHHHHH

Alerter
@

@
@I

Example of picture environment
\unitlength=1mm % for better idea about dimensions
\def\konec{\color{red}\line(0,1){1}}
\begin{picture}(43, 50) %canvas -- box
\put(-1,-1){\dashbox(45, 55)} %extends -- never mind
\put(10, 35){\color{red}\circle{5}} %dimension limit
\put(22, 35){\color{red}\circle{5}}
\put(15.5, 25){\color{gray}\circle*{5}}
\put(15.5, 30){\oval(20,20)} %predefined arcs
\put(15, 0){\line(0,1){15}}
\put(17, 0){\line(0,1){15}}
\put(15, 5){\color{red}\rule{2mm}{5mm}} %simple ”text”
\put(6, 15){\framebox(19, 5){%

\framebox(18,4){\color{red}%
\scriptsize\sffamily RAIL ROAD}}}

\put(16, 40){\line(0,1){6}}
\thicklines
\put(6, 41){\color{red}\line(2,1){20}} %slopes
\put(6, 42){\color{red}\line(2,1){20}}
\put(6, 51){\color{red}\line(2,-1){20}}
\put(6, 52){\color{red}\line(2,-1){20}}
\put(6, 41){\konec} %the use of macros
\put(6, 51){\konec}
\put(26, 41){\konec}
\put(26, 51){\konec}
\thinlines
\put(0,0){\line(1,0){43}}
\put(30, 2){\color{blue}Alerter} %simple text
\put(40, 6){\color{blue}\vector(-1, 1){10}}
\end{picture}

As you can see from the example, the environment contains commands for rendering
certain image objects and the possibility of placing their reference point in any place. The
command

\put(x, y){object}
places object anywhere on the desktop, but also outside it – the affiliation of the coordi-
nates x and y to the workspace space is not checked in any way.

The second command to place the object is

78

\multiput(x, y)(Δx, Δy){number}{object}.

The command performs the placement of the corresponding object starting from the
first coordinates as many times as the parameter number indicates, while changing the
position of the placement by the difference Δ𝑥 and Δ𝑦 .

The simplest object is text, its reference point is on the left edge on the baseline.
The command \rule can also serve as text to draw a line or rectangle. Furthermore,
the object for drawing the circle \circle is used in the sample or circle \circle*. As
already mentioned, arcs and slanted lines are composed of corresponding elements in the
form of letters of a special font. Therefore, there is a limitation on the size of both the
circle and the circle* (diameter approx. 10 mm or 6 mm).

The \line and arrows \vector. are somewhat more complicated to enter. The
lengths of the segments are entered in round brackets, so for example (2, 1) means
segments with a projection of two units to the 𝑥 axis and one unit to the 𝑦 axis, so it is a
line with a slope of about 26° (exactly it is arc tg 1

2). Combinations can contain the values
±1 to ±6. If one value is zero, then the other value is always 1 and yields a horizontal or
vertical line. Negative value represents the opposite quadrant.

Circles, ovals, and slanted lines can be drawn in two thicknesses – 0.4 pt (default)
or 0.8 pt when toggled with \thicklines. You can switch from thick back to thin with
\thinlines.

Any part of the drawing can be rendered in any color, similar to normal text (com-
mand \color).

An interesting object is \framebox, whose parameter may contain some other ob-
ject – in the example it is text. It is implicitly placed in the center of the framed box.
However, the command also has an optional parameter, where the letters lrtbc can
specify other of the nine possible locations, eg the combination lt defines the upper left
corner (left, top), etc. Not specifying a letter means an implicit center. The dashed bound-
ing box \dashbox works similarly and there is also a box without framing \makebox,
whose primary purpose is the possibility of placing its contents in one of the nine selected
points.

A very important application option of the picture environment is its use to insert
any object in any place in the page area. If we write for example:
\begin{picture}(0,0)\put(100,-30){\line(1,0){50}}\end{picture},
a box of zero size is created (it doesn’t affect where it’s written in the typesetting or where
its internal graphics objects point at all), but a 50-unit horizontal line appears at a location
100 units horizontally and 30 units \unitlength down. For example, clipping marks
can be rendered by placing an appropriate sequence of lines in the null environment of
picture placed in a running heads.

In a similar way, in the example, the image was placed on the right side of the page
next to the text with the picture environment commands.

Another situation where zero environment dimensions are useful are image labels
for image inserted from a external file. We can create an image without labels in some
program and add the labels after inserting them into the text in order to achieve a uni-
form font with the rest of the document. In addition, the image can be used in different
documents and always achieve a completely consistent look.

It goes without saying that parts of an image, parts of commands or even the en-
tire environment can be used as the body of the definition of a new command (in the

79

example the command \konec = end), so repeating parts can be very advantageously
automated, dimensionally and shape-parametrized, and thereby obtain considerable ad-
vantages for any modifications and changes that balance out the somewhat cumbersome
and restrictive notation style.

80

Chapter 12 81

Document as a whole

In the previous chapters, we dealt with the individual elements of the document in turn,
starting with the font, special characters, through paragraphs to images and other graphic
elements, now we will look at the document as a whole, its page arrangement and some
options for transferring information between individual parts.

12.1 Pages arrangement
The order of pages in a document is not random, but like other elements, a certain ar-
rangement has been established over time that the reader expects and that allows him to
efficiently find the information he is looking for in the document.

12.1.1 One-sided or two-sided?

For the document, we have to decide whether the result will be a print on paper or we will
keep only its electronic form. As mentioned earlier, in the electronic form it is necessary
to choose slightly different fonts and other graphic elements (for example, colors). But
we also have to choose the page layout – we usually choose a one-sided type of document
where all pages have the same set margins (even and odd), also the margin settings may
be somewhat different from a document printed on paper, because the common format
of the screen or projector is landscape, not portrait.

For printed documents, we choose the two-sided type – the odd-numbered pages
are always on the right, the even pages on the left, and the double-page has symmetrical
margins – the size of the left margin on the left page is equal to the size of the right
margin on the right page, likewise the inner edges at the spine are identical.

12.1.2 Document arrangement

In documents of different scope and purpose, there are different pages of certain types
and in some cases their order also changes slightly, but in general it can be said that the
basic principles remain the same. The document that typically has the most page types
is a book. In the following list, we will mention commonly used elements in books, but
also elements typical for, for example, final or qualification theses. Broadly, document
elements can be divided into three parts: everything before the main body is sometimes
called the front part, everything after the main body is called the back part. These sections
can sometimes be distinguished by different pagination as well as page numbering. For
example, it is customary for some publishers to number the front part of the book with
Roman numerals and the main part with Arabic numerals, with the numbering of the
main part starting again from one.

Cover – it is a visually attractive element, especially for a book, so that the book can
be seen from a distance on the bookstore shelf. Quite often, the graphic elements
used are different from those used in the document, although a well-designed piece
should be visually correspond to the content. (Technical design of the cover – see
overview of bindings.)

Inset – a sheet of somewhat stiffer paper, which is used to glue and hang a book block
in a hardcover. Most often it is completely empty, but sometimes it is used for
additional graphics (children’s books) or is printed with a graphic pattern or other
motif.

Foretitle – the name of the document in a basic typeface placed usually in the optical
center of the page; introduces the reader to the entire document (used especially
for books). The subtitle page is numbered as 1, although the page number is not
usually given.

Frontispice – left facing page to main title; it is often empty, but sometimes forms a
graphic unit with the main title and contains, for example, a full-page image (photo)
or other additional information.

Title – narrative page giving the most important information about the document: title,
subtitle, author, year or date of publication, publisher, etc. A properly designed title
page uses graphic elements corresponding to the design of the document, both in
its layout and font parameters.

Publisher’s record – page with information about the creation of the document; if the
document has been assigned a standard number (ISBN), it must be listed here. In
older publications, the publisher’s record is very brief and contains the names of
the authors, the date of publication and any indication of copyright, in the case
of professional publications, the names of reviewers, advisors, etc. In newer pub-
lications, the foreign custom of stating the publisher’s information, the names of
editors and other persons involved in the creation and production of the work is
often adopted here (data from colophon).

Dedication, Acknowledgments, Motto – single pages with usually simple design (basic
font size in optical center).

Abstract – especially for professional and final theses, a several-line specification of the
content of the work presented in various research library systems and used for
quick orientation of the reader. It is available in several languages and is sup-
plemented with key words (passwords) facilitating the definition of the discussed
issue.

Contents – a list of important parts of the document (chapters, sections) used to orient
the reader in the document. It is usually listed only in professional publications,
in fiction (if at all) it is often placed at the back of the book. In the case of more
extensive publications, the content can be designed at multiple levels – a coarser
(overview) level with a list of only larger units and a subsequent fine (detailed) level
with additional information. In this way, the reader can more precisely search for
the place he is interested in in the document.

82

Lists of figures and tables – this is additional information to the content; again, it is
important how this information is beneficial for the reader and for his orientation in
the document. If listed, they should always speed up the search for a site containing
the specific thing the reader is likely to follow.

List of terms, abbreviations – for professional documents, it is suitable if the author
wants to precisely define the meanings of terms and abbreviations used in pro-
fessional practice in multiple meanings, or wants to introduce his own terms and
abbreviations to clarify and shorten the interpretation. In this section, terms and
abbreviations should not have fixed meanings.

Preface – text containing information about the motive, method of creation and other
contexts of the creation of the publication. Other helpers are often mentioned here
– people who participated, for example, in data collection and cleaning, laboratory
work, professional consultations, etc.

Introduction – Text related to the focus of the publication and often already included in
the main part of the publication.

Main body – chapters, sections, subsections – the entire content of the publication.

Afterword – text with the same meaning as the preface, but placed at the back of the
publication (then the publication does not have a preface).

References – a list of all sources from which the authors of the publication drew any
ideas, inspiration, data and other elements. It is of fundamental importance in
professional works and is largely standardized (ISO 690 standard).

Summary – a section with a similar meaning to the abstract, but appearing at the back
of the book. The summary is sometimes larger than the abstract and focuses on
the results of the work (especially for research, development and final theses).

Index – represents a list of important terms of the entire publication. It is suitable for
more extensive and overview documents, textbooks and manuals. A high-quality
index can significantly help the reader to find his way around the publication and
allow him to quickly find essential information. The proposal of passwords for
the register and their arrangement is an important author’s work, but at the same
time very demanding on accuracy and completeness. There may be more than
one index in one publication (subject index, name index, Latin term index, etc.).
Indexes created by an editor (typewriter) or completely automatically are usually
of unsatisfactory quality and contribute little to the orientation of the reader.

Appendices – parts containing material that does not fit into the main text, but expands
the information richness of the publication. Typically, original data from which the
publication draws and analyzes it, or complete source codes of developed programs,
various lists and additional resources can be inserted into the appendices. The
typesetting of the attachments can be done with the same parameters as the main
text, only the numbering of the headings changes, but it is also possible to see the
attachments in a different design, because it is convenient to preserve the original
formatting of the attached resources.

83

Colophon – summary technical information about the publication, usually located on
the last odd page of the publication. Data: complete title with all sub-titles, all au-
thors, editors, illustrators, translators, etc., information on the technical design (in
the case of printing about type, printer, circulation, etc.), inclusion of the publica-
tion in the edition series, identification numbers, standard number, recommended
price. In publications adopting foreign customs, these data are given in the pub-
lisher’s record in the front part of the document, while the imprint in the back part
is completely missing. Typesetting uses a basic font and its basic or slightly re-
duced grade, often arranged in the form of a table and placed at the bottom of the
page.

12.2 Moving of information
The above overview of parts of the documents mentions the need to obtain and edit
information from other parts of the documents. A typical case is the table of contents –
a list of chapters, sections, subsections, or other material, indicating the location (page)
in the document. Similarly, a list of tables and figures, possibly lists of terms, keywords,
etc. Another similar element is links between specified places in the document – links to
figures, tables, chapters, sections, footnotes, list items, etc.

All the mentioned problems have one common denominator – the solution of infor-
mation moving. In previous chapters, we have already stated that this moving is tech-
nically realized by storing information in auxiliary files during the compilation of the
document, these auxiliary files are then read in the following compilation and the stored
data is interpreted and put in the appropriate place.

We have already familiarized ourselves with the auxiliary files *.toc (content
items), *.lot (list of tables), *.lof (list of figures) and *.aux (cross references). These
files are created and used by predefined commands, and we as users no longer have to
worry about their handling.

12.2.1 Fragile and robust commands

If we place some text material containing macros in the auxiliary file, it may happen that
these macros will be expanded and the file will no longer contain the original macro,
but its expanded form. When this file is subsequently read during the next compilation,
the expanded form of the macro may no longer be processable. Macros that expand
are called fragile commands because they “break”. Commands that do not perform this
expansion are called robust. When defining a custom command (macro), we can specify
that the command should be robust if instead of \newcommand we use the same syntax
\DeclareRobustCommand. If we want to prevent the premature expansion of a fragile
macro transferred to the auxiliary file, we use the command \protect before it or
TEXform \noexpand.

12.2.2 Index

The creation of the index is somewhat different from the previous cases of information
moving. It is similar to the content, for example, of transferring the index item and the
page number of its occurrence to another place in the document, but in addition, the items

84

need to be organized and sorted alphabetically. This is an operation that must be provided
by an external program. Thus, the process of creating the index has the following steps:

1. Creating the auxiliary file *.idx with items, their attributes and page numbers
during the first compilation. The auxiliary file contains the sequence of macros
\indexentry{item}{page} in the order in which the commands \index{item}
appeared in the source text. The auxiliary file is created and filled in if we include
the command \makeindex. in the preamble of the document.
The command to create a password \index has other options in addition to the
mentioned basic meaning:

• Determining the sub-item: \index{item!subitem}, possibly
\index{item!subitem!subitem}. It is important that the items at a higher
level match exactly (pay attention to inflection, etc. .).

• Help for item sorting: \index{sorting@item} – example:
\item{betacarotene@β-carotene}, where we want the item 𝛽-
carotene to be listed as the text “betacarotene”.

• Distinguishing the importance of item placement: \index{item|cmd} – for
example
\index{item|textbf} will generate an index entry where the page num-
ber will be inserted as a parameter of the command \textbf. We can thus
distinguish the place that is more important for the reader (for example, this
term is defined here) from the place where the term is only used or is in some
a freer relationship.

• Page range: \index{item|(} for start and \index{item|)} for the end. A
page range from the start page to the end page will be generated in the index.
This is useful if the given item appears here many times and it would not be
beneficial to list several consecutive pages in one index entry.

2. The obtained auxiliary file is converted to the resulting list of items with an ex-
ternal program, the typical extension of the resulting file is *.ind. In this file, the
sequence of commands is \item with items text and links to pages; if the index has
subitems, there are commands \subitem, or \subsubitem for two nested levels.
Another command generated to the index is \indexspace defining the vertical
space separating the individual letters of the register.
An external program for processing registry items is, for example, Makeindex,
CSIndex is available for the Czech and Slovak locales. However, it only uses one-
byte encoding of national characters. If the items are in UTF-8 encoding, it is neces-
sary to use, for example, the program xindy. All programs are usually represented
in common distributions and have their own documentation.

3. Custom typesetting of the index is created by the environment
\begin{theindex} ... \end{theindex}, the calculated index in the file *.ind
is inserted into this environment by the command \input{...ind}. By default,
items are arranged in a two-column format. To modify the shape of the index, both
the theindex environment and the \item commands etc. can be redefined.

85

12.2.3 References – bibliographic citations

The valid ISO 690 standard determines the main principles for creating a list of biblio-
graphic citations and references in the text. However, it does not define the exact format
used in individual items, nor the exact way of referencing in the text. A number of inter-
pretations of the standard are based only on the examples and subjects that are given in
the standard, but are not binding and in some cases do not even correspond to spelling
or typographic principles.

The basic purpose of bibliographic citations is to clearly identify borrowed ideas and
materials and to distinguish them from the author’s own texts. This purpose can then be
fulfilled in various ways and with corresponding tools.

A list of bibliographic citations can be thought of quite simply like any other num-
bered or unnumbered list. It lists individual data about the sources, according to purpose,
level of detail, etc. The forms of these data, their arrangement and appearance depend to
a large extent only on the decision of the author. What is important, however, is that the
list is constantly consistent with the references in the text.

In its informative Appendix A, the standard lists three options for citing sources in
the bibliographic citation list:

• Form name–date (Harvard system)
In the text, the reference is written in round brackets with possible page desig-
nation, e.g. (Smith and Watt, 2019, p. 243). The list of bibliographic citations is
arranged alphabetically by surname so that the reader can find each reference ac-
cordingly. No numbering is necessary for the list; if mentioned, it has no meaning
in terms of references and citations. In addition, this form is very flexible – the
necessary information can be given in the text so that it is a natural part of the
sentence, for example “In research by Smith and Watt (2019) it is stated on p. 243
that …”
Because links can take many forms, there is no simple system that supports all pos-
sible forms. At the same time, it is relatively easy to maintain consistency between
references and citations: adding a reference places the bibliographic item in the
corresponding place in the list, and removing the link removes the list item just
as easily. Although these are manual edits, they are always one-time and are not
affected by other links and items.

• Form of numerical references
References in the text are in the form of a serial number written in round brack-
ets, square brackets or in the form of an exponent, including additional infor-
mation (page numbers, etc.). Example: “Research (34, p. 243) states that …” or
“Research34, p. 243 states that …”
The list of bibliographic citations is sorted by the order of occurrence of citations
(not alphabetically!), the first reference is always number 1.
In this case, it is necessary that the correspondence between the reference num-
ber and the order in the list is ensured automatically. It is the only form that is
almost fully supported by the corresponding commands. The command system
\cite{label} is used for this for references in the text and the list of bibliographic
citations in the thebibliography environment. In the predefined form, square

86

brackets are used for references (the standard allows them, but they can be easily
redefined to be round or exponent-shaped by modifying the “internal” command
\@cite). The necessary link between the link and the corresponding item in the
list is then formed by the selected label.
The list of bibliographic citations is handled by the aforementioned environment,
in which the items defined by the command \bibitem{label} data are located.
The environment thebibliography also has a parameter indicating the required
size of sequence numbers so that the list is precisely formatted starting from the
first item.
In the following example, only selected items are listed for clarity (missing data
are shown by ellipsis). For bibliographic data there are still other simplifying com-
mands – \litauthor and \litname defining the shape of important items in cita-
tions (the author is typeset in small caps, the name in italics). Ensuring the unifor-
mity of the appearance of items is one of the principles defined by the bibliographic
standard.

Example of bibliographic citation
\begin{thebibliography}{00} % less than 100 items in the list are assumed
\addcontentsline{toc}{chapter}{References}
\markboth{References}{References}
...
\bibitem{latex} \litauthor{Lamport, L.} \litname{\LaTeX{} -- a Document

Preparation System: User’s Guide and Reference Manual}.
Reading: Addison-Wesley Publishing Company, 1994. % item in order #8

...
\bibitem{companion} \litauthor{Goosens, M., Mittelbach, F., Samarin, A.}

\litname{The \LaTeX{} Companion}. Reading: Addison-Wesley, 1994. % #35
...
\bibitem{matsazba} \litauthor{Nohel, J.} \litname{Sazba matematická

a chemická}. Praha: SNTL, 1976. % #51
...
\end{thebibliography}

The initial statement opening the bibliographic citation environment produces an
unnumbered top-level heading in the given document class (chapter in the book
and report classes, section in the article class). The heading text is stored in the
macro \refname – by redefining it, the text can be modified in any way. Because
the heading is unnumbered, it is not automatically included in the table of contents
or inserted into regular headings. This can be done by corresponding commands
placed just after the beginning of the environment as is shown in our example.
Individual items are numbered using the counter enumiv, the value of which can
be referred to by labels, or its value can be changed as needed. The inserted bibli-
ography will then have the following form in this document:

87

87

Bibliography
...

[8] Lamport, L. LATEX – a Document Preparation System: User’s Guide and Refer-
ence Manual. Reading: Addison-Wesley Publishing Company, 1994.
...

[35] Goosens, M., Mittelbach, F., Samarin, A. The LATEX Companion. Reading:
Addison-Wesley, 1994.
...

[51] Nohel, J. Sazba matematická a chemická. Praha: SNTL, 1976.
...

References are then given in different forms in the text, for example:
\cite{latex} – yields output as [8], \cite[s.\,221]{companion} – is output
as [35, s. 221], \cite{latex, matsazba} – is output as [8, 51], etc.
The BibTEX system can be used to further automate the entire process. The prin-
ciple consists in the gradual (and often long-term) building of a database of bibli-
ographic resources (a text file, e.g. references.bib of a special format). If there
are references to these sources in the text of the document, the external program
BibTEX will extract them from the auxiliary file *.aux, according to them, it will
select the resulting file *.bbl the resulting items from the database, it usually also
sorts them alphabetically and formats them into items \bibitem. This file also con-
tains the environment thebibliography, just insert it into the document with the
command \include. More information to the extensive and multifaceted BibTEX
system can be found in the standard documentation in the distribution.

• Form of running footnotes
This form assumes that bibliographic citations are not listed in a single list some-
where at the back of the document, but are continuously placed in footnotes. Each
reference in the text is therefore technically solved by the corresponding command
\footnote, in the text of which there is (at the first occurrence) a complete set of
data about the given source, including possible page location. If we refer to such a
resource somewhere else, another note number is generated again, but in the text
of the footnote you can refer to the footnote number where the previous occur-
rence is located. Quite ordinary pairs of \label{label} and \ref{label} can
be used for this.
The advantage of this form is undoubtedly the quick availability of data on sources
for readers. On the other hand, however, the information is scattered throughout
the document, with backlinks to other notes, the reader has to scroll through to find
where the note occurred, etc. The system is particularly useful when the references
are relatively few and the summary list of citations does not bring any added value
to the reader.

88

An example of running footnotes
In pedagogical theory, it is stated that the optimal success rate of the
test is around 50\%.\footnote{\author{Chráska, M.} \name{Didactic tests}.
Prague: SPN, 1987, p.\,46.\label{chraska1}} On the other hand,
Maňák\footnote{\author{Maňák, J.} \name{Outline of Didactics}. Brno:
Paido, 1998, p.\,118.} states that the results of intentional action should
be expressed by a fundamentally greater success rate. In addition, it can be
noted that Chráska\footnote{See note \ref{chraska1}, p.\,81.} here mostly
considers entrance tests in which the intentional action is not yet
manifested to the necessary extent.

After compilation we get the following result:

In pedagogical theory, it is stated that the optimal success rate of
the test is around 50%.¹ On the other hand, Maňák² states that the
results of intentional action should be expressed by a fundamen-
tally greater success rate. In addition, it can be noted that Chráska³
here mostly considers entrance tests in which the intentional ac-
tion is not yet manifested to the necessary extent.

12.3 Production of a physical document
The production of more narrative documents (brochures, books, magazines) is largely a
complex production process that the average computer user cannot access. One of the
most complex documents commonly produced with office equipment can be a notebook
(jotter), the pages of which are held together with a paper clip, or a ring binder or stapler
clip. Printing must also correspond to this procedure – in office practice, A4 format
papers are most often used, from which an A4 brochure can be created with a clip or ring
binding, or a notebook binding with A5 format (two pages on an A4 sheet).

Low print run (up to dozens of pieces) is usually done on laser (black and white and
color) printers. Smaller numbers of pieces can also be produced on inkjet printers, but
the print may be damaged by moisture or bleed if lower quality paper is used.

In some cases, we need to prepare a document in such a way that we want to change
the order of pages, their placement on a sheet of paper, margins for binding and possible
trimming, etc. The following subsection deals with this problem.

12.3.1 Imposition pages for printing

In the professional production of a publication (brochure, book), printing is usually done
on a much larger paper format than the final publication format – it is economical and
the subsequent bookbinding process is considerably easier than if the printing was done
directly on sheets of the final size. It is typically printed double-sided on sheets, from
which 16-page folders are then folded with three folds. Individual pages must then be
impose on this sheet so that after bending, folding and cutting, a 16-page “brochure” is

¹Chráska, M. Didactic tests. Prague: SPN, 1987, p. 46.
²Maňák, J. Outline of Didactics. Brno: Paido, 1998, p. 118.
³See note 1, p. 81.

89

automatically created – see Fig. 12.1. These folders are then placed together and glued
in the spine, creating the entire publication.

1 2 34

5 6789 10 1112

16 15 1413

A B

Figure 12.1: Imposition on the sheet of 16 pages (A – face of the sheet, B – back of the sheet)

In the case of simpler printed materials with a booklet binding, the imposition gang
stitched, the individual sheets are printed on both sides with 4 pages, the sheets are placed
on top of each other and folded with one fold. In the place of fold, the publication is
stitched together. The layout of the pages for an example of a 16-page publication is
shown in Fig. 12.2.

A B

16 1 2 15

14 3

12

10

5

7

4

6

8

13

11

9

Figure 12.2: Imposition for gang stitching for 16-page publication (A – face of the sheet, B – back of
the sheet)

Printer houses use complex and expensive programs to impose pages and many
other essentials. On the other hand, a simple A5 brochure with a gang stitching can

90

be quite easily made into A4 office paper. To imposition pages, we can use commonly
available programs:

• There is a pdfpages package with a number of parameters for processing the fin-
ished typesettig in PDF. We create a source file in which we connect this package
and insert it with the command \includepdf[options]{file} a link to a PDF
publication created in the usual way. The options allow you to control the way
individual pages are inserted and their distribution on sheets. As one of the most
common examples, we can mention the imposition of pages when printing two A5
pages on A4 format sheets (fig. 12.2). Let’s assume that the finished typesetting is
ready in the file info.pdf. We will prepare the following document:

\documentclass{article}
\usepackage{pdfpages}
\begin{document}
\includepdf[pages=-, angle=90, booklet, openright]{info.pdf}
\end{document}

By compiling to PDF output, the pages will be imposed into a brochure.

• Imposition of pages during printing can also be done in a PDF format file browser,
for example Acrobat Reader. It allows you to rearrange the pages in order for a
booklet, for example, but there are no options to influence the scale, margins and
offset on the paper so that the pages are in the optimal place after folding and
stapling into a V1 binding.

12.3.2 Overview of bookbindings

The binding of the document is important during creation so that we can correctly design
the placement of the typeset material on a sheet of paper. Each binding takes some space
from the surface of the paper – at the spine, where the papers are joined (glued, stapled)
and at the edges, where trimming is done. Approximately 5 mm is calculated for the cut,
the loss on the back side is different. Let’s take a look at common bindings and their
effect on available paper area.

We divide book bindings into three categories: flexible (marked V1–V4), semirigid
(V5, V6) and hard-case (V7–V9). Next, we will focus more on flexible bindings, because
they are most often considered when creating office printed materials. Semirigid V5
binding (cardboard cover and sewn book block) is practically no longer produced, V6 is
folding picture book. Hard-case bindings are exclusively the domain of professional pro-
duction – they are durable book bindings with sewn folders mounted with board paper
into a hard envelope covered with paper, book cloth or leather.

Flexible bindings are (see Fig. 12.3):

• V1 – back-wire stitching. The folders gang-stitched and joined in the middle with
staples. Suitable for a maximum of 60 sheets (120 pages). In the spine, you can
count on minimal space loss (up to 5 mm).

• V2 – perfect binding (also paperback). The book block is glued in the spine and
pasted into the cover with. The cover is also partially glued from the side, this is a
space that cannot be used on the paper – approx. 10 mm, sometimes more.

91

cover

book block

saddle-stitch
with wire

V1

book block

cover

spine glue
and cover glue

V2

book block

cover

wire
stitching

V3

cover

book block

thread stitching
of book spine

V4

Figure 12.3: Overview and schemas of flexible bindings

• V3 – stitched binding. The folders of the book block are connected to the cover
with staples from the side. Considerable space is lost in the spine, approx. 20 mm.
With a larger number of sheets, the publication is difficult to open, and the space
near the spine is difficult to see.

• V4 – stitched binding. The folders are stitched with threads, the entire book block is
glued on the spine and stuck in a cover. The binding is of relatively high quality, the
publication is it opens relatively well and the space in the back is easily accessible.
Can count with a loss of approx. 5 mm.

Each of the listed bindings can also have a different design of the cover. It is usually a
heavier weight paper, sometimes it can have a different color. It is supposed to be printed
with the title information (on the first cover page) and sometimes the colophon or just the
sales barcode on the last page. For cost-saving reasons, the inner pages of the envelope
are sometimes used for additional information (publisher’s record on the second page, or
colophon on the third page of the cover).

According to the intended binding, we adjust the edges and other page elements, or
adjust the parameters when imposing the pages on the sheet. The total number of pages
of the publication must be completed on whole sheets. For example, if it is a V1 binding
of A5 format and we are preparing A4 sheets printed on both sides, the number of pages
of the publication must be divisible by four. We will either edit the document so that it
takes up more pages as needed, or we will insert flyleafs in the appropriate places. At
the same time, it is necessary to ensure that important information is always on the right
(odd) pages.

92

In professional processing in bookbindings, the appropriate number of flyleafs is
usually added automatically at the end of the publication when the pages are imposed.

93

94 Chapter 13

References for further study

• Goosens, M., Mittelbach, F., Samarin, A. The LATEX Companion. Reading:
Addison-Wesley, 1994.

• ISO ISO 80000. Quantities and units. Part 1: General. ISO, 2009.

• ISO ISO 80000. Quantities and units. Part 2: Mathematical signs and symbols to be
used in the natural sciences and technology. ISO, 2009.

• Knuth, D. E. The TEXbook.

• Lamport, L. LATEX – a Document Preparation System: User’s Guide and Reference
Manual. Reading: Addison-Wesley Publ. Comp., 1994.

• Nohel, J. Sazba matematická a chemická. Praha: SNTL, 1976.

• Oetiker, T., Serwin, M., Partl, H., Hyna, I., Schleg, E. The Not So Short Introduc-
tion to LATEX Or LATEX in 280 minutes. October 11, 2022, https://tobi.oetiker.
ch/lshort/lshort.pdf

• Olšák, P. TEXbook naruby. Brno: Konvoj, 2002.

• Olšák, P. TEX in a Nutshell,
https://www.cstug.cz/bulletin/pdf/2021-1-4.pdf,
https://petr.olsak.net/ftp/olsak/optex/tex-nutshell.pdf,
Version of the text: 0.8+ (2022-06-10)

• Olšák, P. Typografický systém TEX. Praha: Grada, 2001.

• Rybička, J. LATEX pro začátečníky. Brno: Konvoj, 2003.

• Satrapa, P. LATEX pro pragmatiky. Verze: 1.1, 2011, http://www.nti.tul.cz/
~satrapa/docs/latex/latex-pro-pragmatiky.pdf

95

Appendices

96 Appendix A

Overview of elements used in
mathematical environments

Spaces

𝑥𝑥 without space 𝑥 𝑥 \, thin space
𝑥𝑥 \! negative narrow space 𝑥 𝑥 \: middle space
𝑥 𝑥 \; wide space 𝑥 𝑥 \quad quadrat (em)
𝑥 𝑥 \␣ interword space 𝑥 𝑥 \qquad two quadrats

Greek alphabet

𝛼 \alpha 𝜃 \theta 𝑜 o 𝜏 \tau
𝛽 \beta 𝜗 \vartheta 𝜋 \pi 𝜐 \upsilon
𝛾 \gamma 𝜄 \iota 𝜛 \varpi 𝜙 \phi
𝛿 \delta 𝜅 \kappa 𝜌 \rho 𝜑 \varphi
𝜖 \epsilon 𝜆 \lambda 𝜚 \varrho 𝜒 \chi
𝜀 \varepsilon 𝜇 \mu 𝜎 \sigma 𝜓 \psi
𝜁 \zeta 𝜈 \nu 𝜍 \varsigma 𝜔 \omega
𝜂 \eta 𝜉 \xi

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi
Δ \Delta Ξ \Xi Υ \Upsilon Ω \Omega
Θ \Theta Π \Pi Φ \Phi

Arrow symbols

Symbols marked in the following tables with the + tag are available through the
latexsym package.

← \leftarrow ⟵ \longleftarrow ↑ \uparrow
⇐ \Leftarrow ⟸ \Longleftarrow ⇑ \Uparrow
→ \rightarrow ⟶ \longrightarrow ↓ \downarrow
⇒ \Rightarrow ⟹ \Longrightarrow ⇓ \Downarrow
↔ \leftrightarrow ⟷ \longleftrightarrow ↕ \updownarrow
⇔ \Leftrightarrow ⟺ \Longleftrightarrow ⇕ \Updownarrow
↦ \mapsto ⟼ \longmapsto ↗ \nearrow
↩ \hookleftarrow ↪ \hookrightarrow ↘ \searrow
↼ \leftharpoonup ⇀ \rightharpoonup ↙ \swarrow
↽ \leftharpoondown ⇁ \rightharpoondown ↖ \nwarrow
⇌ \rightleftharpoons ; \leadsto+

Relational symbols

≤ \leq ≥ \geq ≡ \equiv ⊧ \models
≺ \prec ≻ \succ ∼ \sim ⟂ \perp
⪯ \preceq ⪰ \succeq ≃ \simeq ∣ \mid
≪ \ll ≫ \gg ≍ \asymp ∥ \parallel
⊂ \subset ⊃ \supset ≈ \approx ⋈ \bowtie
⊆ \subseteq ⊇ \supseteq ≅ \cong � \Join+
⊏ \sqsubset+ ⊐ \sqsupset+ ≠ \neq ⌣ \smile
⊑ \sqsubseteq ⊒ \sqsupseteq ≐ \doteq ⌢ \frown
∈ \in ∋ \ni ∝ \propto
⊢ \vdash ⊣ \dashv

Binary operators

± \pm ∩ \cap � \diamond ⊕ \oplus
∓ \mp ∪ \cup △ \bigtriangleup ⊖ \ominus
× \times ⊎ \uplus ▽ \bigtriangledown ⊗ \otimes
÷ \div ⊓ \sqcap ◁ \triangleleft ⊘ \oslash
∗ \ast ⊔ \sqcup ▷ \triangleright ⊙ \odot
⋆ \star ∨ \vee � \lhd+ ○ \bigcirc
∘ \circ ∧ \wedge � \rhd+ † \dagger
• \bullet ⧵ \setminus � \unlhd+ ‡ \ddagger
⋅ \cdot ≀ \wr � \unrhd+ ⨿ \amalg

Other symbols

ℵ \aleph ′ \prime ∀ \forall ∞ \infty
ℏ \hbar ∅ \emptyset ∃ \exists 2 \Box+
𝚤 \imath ∇ \nabla ¬ \neg 3 \Diamond+
𝚥 \jmath √ \surd ♭ \flat △ \triangle
ℓ \ell ⊤ \top ♮ \natural ♣ \clubsuit
℘ \wp ⊥ \bot ♯ \sharp ♢ \diamondsuit
ℜ \Re ‖ \| \ \backslash ♡ \heartsuit
ℑ \Im ∠ \angle 𝜕 \partial ♠ \spadesuit
℧ \mho+

Scalable symbols

∑ ∑ \sum ⋂ ⋂ \bigcap ⨀ ⨀ \bigodot
∏ ∏ \prod ⋃ ⋃ \bigcup ⨂ ⨂ \bigotimes
∐ ∐ \coprod ⨆ ⨆ \bigsqcup ⨁ ⨁ \bigoplus

∫ ∫ \int ⋁ ⋁ \bigvee ⨄ ⨄ \biguplus

∮ ∮ \oint ⋀ ⋀ \bigwedge

97

Math functions

\arccos \cos \csc \exp \ker \limsup \min
\sinh \arcsin \cosh \deg \gcd \lg \ln
\Pr \sup \arctan \cot \det \hom \lim
\log \sec \tan \arg \coth \dim \inf
\liminf \max \sin \tanh

Big delimiters

(()) ↑ \uparrow / /
[[]] ↓ \downarrow \ \backslash
{ \{ } \} ↕ \updownarrow | |
⌊ \lfloor ⌋ \rfloor ⇑ \Uparrow ‖ \|
⌈ \lceil ⌉ \rceil ⇓ \Downarrow
⟨ \langle ⟩ \rangle ⇕ \Updownarrow

Accents

�̂� \hat{a} ́𝑎 \acute{a} ̄𝑎 \bar{a} ̇𝑎 \dot{a}
̌𝑎 \check{a} �̀� \grave{a} 𝑎 \vec{a} ̈𝑎 \ddot{a}

�̆� \breve{a} �̃� \tilde{a}

Typefaces in math environments

\mathnormal{text} implicit math italic
\mathrm{text} typeface Roman
\mathbf{text} bold typeface Roman
\mathsf{text} sans serif
\mathit{text} math italic
\mathtt{text} typewriter
\mathcal{text} calligraphic font (only English capital letters).

98

Appendix B 99

How to install and use a working
distribution

To get started with XƎLATEX (or LATEX and other TEX-like systems), there are several dis-
tributions available for free. The TEXLive distribution has been carefully maintained and
updated every year for many years as the most widespread and most easily available.
The original idea of this distribution was its ease of use even without any installation; by
simply inserting the media (DVD) into the drive it is possible to start working. However,
this is an atypical use case, for serious work it is advisable to install the distribution on
your own computer.

The distribution is available from the Internet
https://tug.org/texlive/acquire-netinstall.html,
where you can also find all other information about this distribution, installation process,
documentation, etc.

The entire installation can be started by downloading the file
install-tl-windows.exe (for Windows-type systems) or install-tl-unx.tar.gz
for other platforms.

It is a relatively small archive, unpacking which creates the directory install-tl-*
and there is the installation script install-tl-windows.bat (or similar for other plat-
forms). It needs to be run. After setting several installation parameters (distribution
target directory, etc.), the installation starts, downloads all the necessary files from the
Internet (several gigabytes) and finally generates the necessary formats and sets other
elements.

It is advisable to supplement the distribution with a suitable editor for editing and
updating the source text. There are a large number of such editors, and each user can
choose the one that suits him best. For example, the Open Source editor TEXstudio (avail-
able at texstudio.org) can be choosen as one of the widely used ones.

In addition to installing the system on your own computer, there is also the possibil-
ity of using web applications. One of them is the Overleaf application (overleaf.com).
It is available for free for general use, advanced functions and project sharing are charged.
The TEXonWeb application was also originally created for teaching purposes at the Fac-
ulty of Business Economics of the Mendel University in Brno (tex.mendelu.cz). It can
be used completely free of charge for any purpose.

B.1 User Support
Users of TEX and all related systems can find many components (packages and supporting
software) on the CTAN repository – Comprehensive TeX Archive Network (ctan.org,
which is mirrored worldwide – over 100 servers).

Users of TEX all over the world gather in groups – TUG (TEX Users Groups). The
main group is the American TUG and there are 27 other user groups around the world.
CSTUG – Czech and Slovak TEX Users Group operates in the Czech and Slovak Republic
(details on the website www.cstug.cz). Membership in a TUG supports the development
of the system and its use in all areas. Some groups also publish specialist magazines
dealing with the development and use of TEX-based systems. TUGBoat (TUG magazine)
is well-known and spread worldwide, and the CSTUG Bulletin is published in the Czech
and Slovak Republics. Members receive the magazine in printed form, for other people
electronic archive versions are also available (usually with some delay).

In addition to user support within the TEX groups, it is also possible to use the ex-
change of good practice at https://tex.stackexchange.com/.

100

Appendix C 101

For inspiration – how this publication is
typeset

In the following abbreviated view of the document class ioscs.cls you can see how
some elements of this book were implemented. Some standard commands have been
redefined, and specific definitions have been added to them according to the needs of
this document.

%%
%% This is file `ioscs.cls',
%%
\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{ioscs}[2020/01/11 XeLaTeX document class

for Erasmus+ documents]

\LoadClass[twoside]{report} % default font size: 10 pt
\usepackage[b5paper]{geometry} % paper format
\usepackage{unicode-math}
\usepackage{xltxtra, polyglossia}
\setdefaultlanguage{english}
\usepackage[usenames]{xcolor}
\usepackage{tabularx}
\usepackage{colortbl}
\usepackage{graphicx}
\usepackage{fancyvrb}
\usepackage{longtable}
\usepackage{multicol}
\usepackage{url}

% font for books:

\defaultfontfeatures{Mapping=tex-text}

\setmainfont{Libertinus Serif}
\setsansfont{Libertinus Sans}
\setmathfont{Libertinus Math}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% colors

\definecolor{myblue}{rgb}{0.3,0.5,0.74} % color for emphasize

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Microtypography

\def\uv#1{“#1”} % quotes: english
%\def\uv#1{„#1“} % quotes: czech, slovak
\def\bsl{\char92\relax} % backslash
\def\lbr{\char123} % curly brackets
\def\rbr{\char125}
\def\striska{$\hat{\rule{0.5em}{0pt}}$}
\def\,{\penalty10000\hskip0.25em} % solid 1/4 em space
\def\;{\penalty10000\hskip0.16667em} % solid 1/6 em space
\def\spoj{\discretionary{-}{-}{-}} % czech hyphen

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sectioning

% redefined chapter heads
\def\chapter {%

\if@openright \cleardoublepage \else \clearpage \fi
\thispagestyle {empty}%
\global \@topnum \z@
\@afterindentfalse
\secdef \@chapter \@schapter}

\renewcommand\thechapter{\arabic{chapter}}

\def\@makechapterhead #1{%
{\parindent \z@ \raggedright \Large \bfseries

\interlinepenalty\@M
\textsf{\color{myblue}\@chapapp

\enspace\thechapter\hfill\thepage}
\hbox{\rule[20pt]{\textwidth}{0.8pt}}
\huge \bfseries
\begin{flushright}
\strut{\color{myblue}#1}
\end{flushright}
\nobreak
\vskip 25\p@ plus 10\p@ minus 4\p@
\@topnum=0

}%
}

\def\@makeschapterhead#1{%
{%
\markboth{}{}%
\parindent \z@ \raggedright \normalfont
\interlinepenalty\@M
\textsf{\color{myblue}\mbox{}\hfill\thepage}

102

\hbox{\rule[20pt]{\textwidth}{0.8pt}}
\huge \bfseries
\begin{flushright}
\strut{\color{myblue}#1}
\end{flushright}
\par\normalsize%
\nobreak
\vskip 40\p@ plus 10\p@ minus 4\p@
\@topnum=0
}%

}

% redefined sectioning from the latex.ltx file:
\def\section{\@startsection {section}{1}{\z@}%

{-3.5ex \@plus -1ex \@minus -.2ex}%
{2.3ex \@plus.2ex}%
{\normalsize\Large\bfseries\color{myblue}\raggedright}}

\def\subsection{\@startsection{subsection}{2}{\z@}%
{-3.25ex\@plus -1ex \@minus -.2ex}%
{1.5ex \@plus .2ex}%
{\normalfont\large\bfseries\color{myblue}\raggedright}}

\def\subsubsection{\@startsection{subsubsection}{3}{\z@}%
{-3.25ex\@plus -1ex \@minus -.2ex}%
{1.5ex \@plus .2ex}%
{\normalfont\normalsize\bfseries\color{myblue}\raggedright}}

\def\paragraph{\@startsection{paragraph}{4}{\z@}%
{3.25ex \@plus1ex \@minus.2ex}%
{-1em}%
{\normalfont\normalsize\bfseries\color{myblue}\raggedright}}

\def\subparagraph{\@startsection{subparagraph}{5}{\parindent}%
{3.25ex \@plus1ex \@minus .2ex}%
{-1em}%
{\normalfont\normalsize\bfseries\color{myblue}\raggedright}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Page concept

\textwidth 126mm \hoffset 0mm
\textheight 200mm \voffset -10mm
\evensidemargin 0mm
\oddsidemargin 0mm

% paragraph typesetting
\parindent 2em
\parskip 0pt
\raggedbottom
\tolerance 2000
\clubpenalty 10000

103

\pagenumbering{arabic}

\def\folio{\fontsize{12pt}{14pt}\selectfont\bfseries
\sffamily\color{myblue}}

% redefined plain page style:
\def\ps@plain{\def\@oddhead{}\def\@evenhead{}%

\def\@oddfoot{\parbox{\textwidth}{\raggedleft\folio\thepage}}
\def\@evenfoot{\parbox{\textwidth}{\folio\thepage}}%

}

%%%%%%%%%%%% emphasizing

\def\strong#1{\textbf{#1}}
\def\vpar#1{{\color{myblue}\itshape\mdseries\rmfamily#1\/}}

\let\silvyznacfnt\bfseries % czech equivalents
\let\vyznacfnt\itshape
\let\vyznac\em

\def\newterm#1{{\bfseries\color{myblue}#1}}

%%%%%%%%%%%%%%%%%%%%%% figures

\def\mycaption#1{\refstepcounter{figure}
\parbox{\textwidth}{\raggedright
\small\itshape \figurename{} \thefigure: #1}%
\addcontentsline{lof}{section}{\thefigure: #1}}

\def\ourfigure#1#2{\begin{figure}[htbp]\centering
\includegraphics{#1.pdf}\par\bigskip
\mycaption{#2}\label{#1}\end{figure}}

\def\ourfigurefit#1#2{\begin{figure}[htbp]\centering
\includegraphics[width=\linewidth]{#1.pdf}\par
\bigskip\mycaption{#2}\label{#1}\end{figure}}

\def\ourfigurex#1#2#3#4{\begin{figure}[htbp]\centering
\includegraphics[#4]{#1}\par\bigskip\mycaption{#2}%
\label{#3}\end{figure}}

%%%%%%%%%%%%%%%%%%%%%% tables, tabulars

\def\psframe#1#2{{\unitlength\textwidth\begin{picture}(1,0)
\put(0,0){\color{#1}\rule[-3mm]{\textwidth}{13mm}}
\put(0.5,0){\makebox(0,0)[bc]{\vrule depth 8mm width 0pt

\parbox[t]{\textwidth}{\centering #2}}}
\end{picture}}}

104

\def\pole#1#2{\begin{tabular}{@{}#1@{}}#2\end{tabular}}
\def\polet#1#2{\begin{tabular}[t]{@{}#1@{}}#2\end{tabular}}

\def\tabpozn#1#2{\multicolumn{#1}{@{}l}{\formpoznsfnt #2}}

\def\horizcara{\par\hrule\relax}

\def\tabname{Tab.}
\newdimen\popis
\long\def\caption#1{\refstepcounter{table}%

\addcontentsline{lot}{section}{\thetable: #1}%
\setbox0=\hbox{\tabname\ \thetable:\ }
\popis=\linewidth \advance\popis by -\wd0

\unhbox0\parbox[t]{\popis}{\raggedright\vyznacfnt#1}
\par\medskip\nobreak}

\newlength{\aktsirkatab}
\newcounter{@tmpsloupce}
\def\preparetab#1{\aktsirkatab=\linewidth

\setcounter{@tmpsloupce}{#1}%
\advance\aktsirkatab by -#1\tabcolsep
\advance\aktsirkatab by -#1\tabcolsep}

\def\ourtable#1{\begin{table}[htb]\centering
\ifempty#1\else\caption{#1}\fi}

\def\endtab{\end{table}}

105

Open Source Tools for Text Processing
Study text

Author: doc. Ing. Jiří Rybička, Dr.
Mendel University in Brno
Publisher: Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Graphic editing and typesetting: Jiří Rybička
Year of publishing: 2022
First edition
Number of pages: 106
ISBN 978-80-7509-880-1 (online ; pdf)
DOI https://doi.org/10.11118/978-80-7509-880-1

