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Three-dimensional (3D) cell culture is attracting increasing attention today because it can
mimic tissue environments and provide more realistic results than do conventional cell
cultures. On the other hand, very little attention has been given to using 3D cell cultures in
the field of avian cell biology. Although mimicking the bone marrow niche is a classic
challenge of mammalian stem cell research, experiments have never been conducted in
poultry on preparing in vitro the bone marrow niche. It is well known, however, that all
diseases cause immunosuppression and target immune cells and their development.
Hematopoietic stem cells (HSC) reside in the bone marrow and constitute a source for
immune cells of lymphoid and myeloid origins. Disease prevention and control in poultry
are facing new challenges, such as greater use of alternative breeding systems and
expanding production of eggs and chicken meat in developing countries. Moreover, the
COVID-19 pandemic will draw greater attention to the importance of disease management
in poultry because poultry constitutes a rich source of zoonotic diseases. For these
reasons, and because they will lead to a better understanding of disease pathogenesis, in
vivo HSC niches for studying disease pathogenesis can be valuable tools for developing
more effective disease prevention, diagnosis, and control. The main goal of this review is to
summarize knowledge about avian hematopoietic cells, HSC niches, avian
immunosuppressive diseases, and isolation of HSC, and the main part of the review is
dedicated to using 3D cell cultures and their possible use for studying disease
pathogenesis with practical examples. Therefore, this review can serve as a practical
guide to support further preparation of 3D avian HSC niches to study the pathogenesis of
avian diseases.
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INTRODUCTION

As a precursor of immune cells, hematopoietic stem cells (HSC) play an indispensable role in the
immune response against the main avian diseases (Cui et al., 2009; Gurung et al., 2017; Hosokawa
et al., 2020). HSC reside in a unique bone marrow environment, where they interact with other cells
and molecules to create a bone marrow niche (Zhang P. et al., 2019). Hematopoietic colonization of
the bone marrow starts at 13 days of embryonic development. During embryonic life, the bone
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marrow, yolk sac, and liver contribute temporarily to
hematopoiesis. Subsequently, the bone marrow serves as the
major site for hematopoiesis in adult chickens (Guedes et al.,
2014). HSC fate, migration, and differentiation are influenced by
many factors, and these circumstances complicate the
preparation of realistic in vitro HSC culture. Current
approaches in mimicking bone marrow environments
comprise scaffold-based systems using hydrogels, and
macroporous and nanofiber scaffolds (Bello et al., 2018). These
scaffolds can be embedded in perfused chambers and through
microfluidic technology, further enhancing the biocompatibility
of cell culture (Bhatia and Ingber, 2014). Nowadays, increasing
interest is given to using these culture systems to study
interactions of immune cells with bacteria and other
pathogens (Lee et al., 2021). In vitro studies constitute the
gold standard for researching disease pathogenesis; it is
interesting that there exists a lack of studies involving
pathogens’ interactions with HSC to evaluate impacts of
disease causative agents on the fate and differentiation of HSC
and on immune cell development. In human medicine, relatively
many studies have been conducted to describe
immunosuppressive mechanisms of human viruses in three-
dimensional (3D) cell culture, as reviewed by He et al. (2016).
In chickens, there have been no experiments with 3D cell culture
to study disease pathogenesis. The main goal of this review,
therefore, is to provide information about 3D cell cultures that
will be useful for in vivo avian HSC 3D culture preparation and
further conceiving of host–pathogen studies.

HEMATOPOIETIC STEM CELLS AND
HEMATOPOIESIS

Hematopoiesis is a group of processes giving rise to blood cells.
The para-aortic foci comprise a source of HSC in embryos. From
there, HSC colonize the developing lymphoid organs
(Yvernogeau and Robin, 2017). CD45+ progenitors of immune
cells from the bone marrow colonize the bursa of Fabricius,
thymus, and spleen already during embryonic development and
continue in this function throughout the life of the bird (Fellah
et al., 2014). A simplified scheme showing the development of
avian immune cells is shown in Figure 1.

Growth factors and cytokines stimulate immune cell
differentiation from hematopoietic progenitors, so they can be
used in vitro for cell differentiation studies. Stem cell factor (SCF)
is the main cytokine responsible for the self-renewal,
proliferation, and differentiation of stem cells and their
progenitors. SCF is a ligand for c-kit receptor (Siatskas and
Boyd, 2000).

Differentiation of myeloid lineage is ensured by colony-
stimulating factors (CSFs). Macrophage CSF elicits
macrophage differentiation from bone marrow progenitors.
The same effect has been shown in IL-34 (Garceau et al.,
2015; Wu et al., 2020). Granulocyte CSF stimulates monocyte
growth and mobilizes heterophils from the bone marrow when
inflammation occurs (Kogut et al., 1997; Gibson et al., 2009). The
final member of the CSF family in chickens is granulocyte-

macrophage CSF, which by itself is responsible for
macrophage differentiation from monocytes (Peng et al., 2020)
as well as the proliferation of tissue macrophages and increasing
responsiveness to macrophage CSF (Chen et al., 1988). Together
with IL-4, granulocyte-macrophage CSF can stimulate dendritic
cells differentiation from bone marrow progenitors (Wu et al.,
2010) and blood monocytes (Kalaiyarasu et al., 2016). Chicken
myelomonocytic growth factor has a function similar to that of
CSF because it stimulates proliferation and differentiation of
granulocytes and macrophages in vitro (Siatskas and Boyd,
2000). The chicken homolog of CAAT, NF-M, has a proven
ability to stimulate the differentiation of eosinophils in the bone
marrow (Müller et al., 1995).

T-cell colonization of the thymus begins in waves during
embryonal development when HEMCAM+ and c-kit+ bone
marrow precursors colonize the cortex of the thymic lobules
(Vainio et al., 1996). Both beta 2-microglobulin (Dunon et al.,
1990) and CCL21 chemokine (Annamalai and Selvaraj, 2010;
Kozai et al., 2017) seem to be involved in this process. Additional
differentiation of naïve T cells occurs under the regulation of
cytokines based on immune response against pathogens, as
reviewed by Kogut (2000) and Wigley and Kaiser (2003).

B-cell precursors from the bonemarrow colonize bursal anlage
from 10 days of embryogenesis (Mansikka et al., 1990). Based on
the expression of CXCR4 on B cells and their precursors, it can be
assumed that CXCL12 chemokine plays a role in the migration of
B-cell precursors (Nagy et al., 2020). Interestingly, B-cell
precursors can be found in the bone marrow during
embryogenesis but not after hatching, presumably because the
colonization of bursal anlage by the bone marrow precursor
occurs only in embryos (Weber and Foglia, 1980). In a more
recent study, B-cell precursors were sorted based on cell size, and
larger precursors were observed to proliferate and differentiate
during development more than did smaller precursors (Ko et al.,
2018). After antigen stimulation, naïve B cells can differentiate
into plasmocytes and stimulate the production of specific
antibodies. B-cell biology in chicken has been reviewed in
detail by Sayegh et al. (2000). Relevant distinctive markers of
avian immune cells for phenotype analysis are shown in Table 1.

Avian Bone Marrow
In birds, the bone marrow distribution is highly correlated with
the existence of medullary bones; therefore, the major sites of
bone marrow hematopoiesis in adult birds are the femur and
tibiotarsus (Canoville et al., 2019). Brandon et al. (2000)
optimized conditions to obtain a full range of blood cells from
hematopoietic precursors in quail. They isolated bone marrow
cells by gradient centrifugation and separated adherent cells by
overnight adherence selection. Obtained blast-like cells were
cultured on methylcellulose and fibrin gel cultures and
differentiated in 6 morphologically different colonies. The
most abundant were granulocyte-macrophage, erythroid, and
macrophage cell colonies. After 6 days of culture, cells
achieved maximal differentiation, and May–Grunwald–Giemsa
staining was performed to recognize cells phenotype. Based on
the visual evaluation, erythroblasts, erythrocytes, aggregated
macrophages, monocytes, heterophils, basophils, eosinophils,
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and thrombocytes were recognized; therefore, they successfully
imitate the avian hematopoiesis in vitro. Additionally, Nazifi et al.
(1999) provided a detailed composition of quail bone marrow.
Erythroid cells were the most prevalent (almost 70%), and
myeloid cells comprised 25% of the whole cell population.
Myeloid/erythroid ratios were described in various avian
species, such as 1 for ducks (Tadjalli et al., 1997), 1.24 for
pheasants (Tadjalli et al., 2013), and 1:14.6 for chickens at
4 weeks (Glick and Rosse, 1981). Glick (1987) showed that
cellular composition is constant in chicken femur and
tibiotarsus, but with increasing age, the numbers of immature
granulocytes decreased. Based on light microscopy evaluation,
the cellular composition of the bone marrow from various avian
species was described, including chicken (Glick, 1987), partridge
(Tadjalli et al., 2012), duck (Tadjalli et al., 1997), black-headed
gull (Tadjalli and Hadipoor, 2002), pheasant (Tadjalli et al.,
2013), Japanese quail (Nazifi et al., 1999), and parrots
(Schwartz et al., 2019).

Bone Marrow Hematopoietic Stem Cell
Niche
In order properly to imitate the bone marrow environment, it is
necessary to understand the morphological structure of the avian
HSC bone marrow niche. Two main subniches can be
distinguished in the bone marrow. The endosteal niche is
located close to the osteoblasts in the endosteum (Bello et al.,
2018). In the endosteal niche, HSC prevalently reside in a
quiescent state due to high concentrations of Ca2+ and
hypoxia. The second subniche is termed the vascular niche
(Figure 2A) where, by contrast, HSC can easily proliferate and
differentiate because there is a higher level of oxygen and lower
concentration of Ca2+ in comparison with the endosteal niche
(Ferreira and Mousavi, 2018). Niche physical properties strongly
influence HSC fate. Young’s modulus (YM) is an indicator of
materials’ stiffness. In the case of the endosteal region, values of

about 40–50 kPa have been determined, but areas near the blood
vessels are much softer, with YM < 3 kPa (Shrestha and Yoo,
2019). Because greater tissue stiffness directly impairs HSC
differentiation, in an endosteal niche, HSC are losing their
stemness (Wen et al., 2014). In the endosteal niche, HSC
reside in a quiescent state that is necessary for sustaining
long-term hematopoiesis. Through signaling and adhesion
molecules, osteoblasts regulate quiescence in HSC and ensure
maintenance of quiescent HSC (Arai and Suda, 2007).

Quiescent HSC from the endosteal niche eventually travel
through the vascular niche, where they undergo differentiation
and expansion. The vascular niche allows HSC to enter the
peripheral blood through blood vessels (Tamma and Ribatti,
2017). More specifically, the vascular niche is divided into
arterial and sinusoidal niches (Zhang P. et al., 2019). In avian
species, CD45+ HSC have been described outside the bone
marrow sinuses in extravascular regions near the arteries,
where lymphopoiesis and myelopoiesis occur (Olah et al.,
2014). Many cell types influence HSC fate within the (sub)
niches, but some of these seem to be more important in
creating those (sub)niches. Endothelial cells line the border of
arteries and express high levels of VCAM-1 adhesion molecule,
which ensures retention of HSC (Ulyanova et al., 2005). On the
other hand, HSC homing and proliferation are supported by E
selectin molecules expressed on sinusoidal endothelial cells (SEC)
(Winkler et al., 2012). Mesenchymal stem cells (MSC), often
termed mesenchymal stromal cells, play an important role in
creating a stroma for the bone marrow niche and influencing
HSC by cell-to-cell contact and production of active molecules
(Walenda et al., 2010; Walenda et al., 2011). Coculture of HSC
and MSC in collagenous hydrogel has revealed some important
findings. HSC were observed to have a higher capacity for self-
renewal in 3D cell culture, and coculture with MSC further
supports HSC proliferation. MSC produce fibronectin and
osteopontin that form an extracellular matrix (ECM)
component, which, in turn, allows HSC easier migration due

FIGURE 1 | Simplified scheme of immune cell development in chickens. *Granulocytes are usually distinguished by light microscopy using blood smears, and their
percentage is counted. Additionally, granulocytes are recognized based on their granularity by flow cytometry (Bilkova et al., 2017).
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to the presence of cell attachment sites (Leisten et al., 2012). MSC
further produce IL-6, granulocyte-macrophage CSF, SCF, and
adhesion molecules such as VCAM-1 and E-selectin. By means of
all these molecules, MSC regulate homing, proliferation, and
differentiation of HSC (Li and Wu, 2011). Chicken MSC
express CD73 and CD44 and can easily be isolated from the
bone marrow and used to coculture with HSC to mimic HSC
niche environment (Adhikari et al., 2019).

Moreover, an HSC niche is composed of other cellular
components that produce molecules involved in HSC self-
renewal, quiescence, or proliferation. Endothelial cells are
further divided into SEC and arteriolar endothelial cells
(AEC), and the biggest difference between them is in the
production of SCF, which ensures the maintenance of HSC.
AEC are more effective producers of SCF than SEC (Ding
et al., 2012; Xu et al., 2018). The rich population of bone
marrow adipocytes is another producer of SCF, which plays
an indispensable role in the maintenance of HSC (Zhou et al.,
2017). Megakaryocytes give rise to thrombocytes in blood. On the
other hand, they directly influence hematopoiesis by cytokine
production. They can affect HSC in various ways. Firstly,
megakaryocytes ensure quiescence of myeloid-based HSC in
megakaryocyte-dependent regions by the production of
CXCL4 (Pinho et al., 2018) and TGF-β (Gong et al., 2018).
Secondly, megakaryocytes can promote the proliferation of
HSC by the production of fibroblast growth factors (Zhao
et al., 2014). TGF-β is known as the inducer of quiescence,
but it was proven that TGF-β in low concentration can
promote the proliferation of myeloid HSC. However, the
quiescence-promoting effect of a high concentration of TGF-β
is undisputed (Blank and Karlsson, 2015). Various cell types are
further involved in TGF-β production, for instance, Schwann
cells (Yamazaki et al., 2011) and macrophages (Hur et al., 2016).
Interferons (IFN-α, IFN-γ) are known inducers of an antiviral
state in a cell, but they can cause loss of quiescence and promote
the proliferation of HSC. TNF-α as a major pro-inflammatory
cytokine was found to suppress proliferation of HSC by induction

of apoptosis, but some studies described positive effects of TNF-α
treatment on the expansion of lymphoid progenitors and bone
marrow granulocytes; therefore, the influence of TNF-α on HSC
fate is controversial (Baldridge et al., 2011).

Various immune cells influence HSC in direct or indirect
ways, and these cells are the target for most pathogens. Therefore,
there is another way in which pathogens influence HSC in their
niche. The most known influencers of HSC are regulatory T cells
and subtypes of macrophages (Man et al., 2021). Marek’s disease
in susceptible chicken lines triggers the production of TGF-β+
regulator T cells, and subsequently high amounts of TGF-β
released into the bloodstream dysregulate hematopoiesis
(Gurung et al., 2017). The same CD4+ CD25+ regulatory
T cells are induced in cecal tonsil of Salmonella-infected
chickens (Shanmugasundaram et al., 2015). Regulatory T cells,
via the production of adenosine, can ensure further quiescence of
allogeneic HSC (Hirata et al., 2018). Many viral pathogens
replicate in bone marrow macrophages (von Bülow and
Klasen, 1983a), and these phagocytic cells influence HSC in a
direct way. They can provide retention sites for HSC through
VCAM-1 (Dutta et al., 2015) and induction of expression of
CXCL12 in MSC (Chow et al., 2011). Therefore, bone marrow
macrophage’s function seems to be promoting retention of HSC
by regulating osteoblast and MSC to maintain retention of HSC,
because treatment with granulocyte CSF caused rapid depletion
of osteoblast and endosteal region macrophages. Due to the loss
of binding sites and factors responsible for the retention, high
numbers of HSC were released into the blood (Winkler et al.,
2010).

Non-cellular HSC niche components such as ECM proteins
not only play supporting roles but also have the ability to greatly
influence HSC functions. Furthermore, they can be easily
incorporated into various 3D cell culture scaffolds (Caliari and
Burdick, 2016). The most abundant molecules in HSC niches are
proteoglycans, which ensure signal delivery between cells
(Redondo et al., 2017) and fibrous proteins (Figure 2B)
(Frantz et al., 2010). Collagen I, a major ECM fibrous protein

TABLE 1 | Distinctive markers of chicken immune cells derived from hematopoietic stem cells.

Type of cell Markers with references

Hematopoietic stem cells CD45 (Hao et al., 2020), HEMCAM (Lampisuo et al., 1998), c-Kit (Yvernogeau and Robin, 2017)
Common myeloid progenitors CSF1R (Garcia-Morales et al., 2014), c-Kit (Yvernogeau and Robin, 2017)
Granulocyte-monocyte progenitors CSF1R (Garcia-Morales et al., 2014)
Heterophil granulocytes MMP9, MRP126, LECT2, CATHL1, LYG2, LYZ, RSFR (Sekelova et al., 2017)
Eosinophil granulocytes MEP17, EOS47 (Yvernogeau and Robin, 2017)
Monocytes CD11c, MRC1L-B (Hao et al., 2020), CSF1R (Garcia-Morales et al., 2014)
Macrophages MRC1L-B (Hao et al., 2020), CSF1R (Garcia-Morales et al., 2014)
Dendritic cells Dendritic cells: CD11c (Hao et al., 2020), CSF1R, MHC-II (Nagy et al., 2016), CD83 (Kalaiyarasu et al., 2016)
Monocyte-derived macrophages MRC1L-B, MHC-II (Peng et al., 2020)
Monocyte-derived dendritic cells CD83, MHC-II (Kalaiyarasu et al., 2016)
Common lymphoid progenitors HEMCAM (Lampisuo et al., 1998), c-Kit (Yvernogeau and Robin, 2017)
T-cell precursors CD3 (Chen et al., 1994), HEMCAM, chL12, c-kit (Lampisuo et al., 1998)
T cells CD3, CD8, CD4 (Hao et al., 2020)
Natural killer cells CD8α (Hao et al., 2020), CD107 (Jansen et al., 2010)
B-cell progenitors CXCR4 (Nagy et al., 2020), Bu-1 (Lampisuo et al., 1998)
B cells Bu-1 (Hao et al., 2020), CXCR4 (Nagy et al., 2020)
Plasmocytes CD57 (Mast and Goddeeris, 1998)
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of the bone marrow, causes a decrease in CD34+ HSC expansion
(Oswald et al., 2006) and an increase in the numbers of cells in a
quiescent state. That is because collagen I is associated with the
endosteal region (Figure 2C), where HSC quiescence occurs
(Chitteti et al., 2015). Also in the endosteal region, hyaluronic
acid supports osteogenesis while ensuring viscoelasticity and
compressive strength of the bone marrow (Figure 2D).
Moreover, hyaluronic acid provides attachment sites through
ICAM-1 and CD44 expressed on chicken MSC (Adhikari
et al., 2019; Zhai et al., 2020). The additional fibrous proteins
fibronectin and laminin express tri-amino acid sequence
(arginine–glycine–aspartate) and are termed RGD peptides
(Bellis, 2011). Integrins are RGD peptide ligands with
numerous functions in HSC (Coulombel et al., 1997). For
instance, β7 integrin activation has been found to regulate
HSC homing and engraftment (Murakami et al., 2016). HSC
in a presence of laminin and fibronectin within ex vivo culture
improved bone marrow engrafting ability and stem cell
expansion, probably due to integrin-induced pathways (Sagar
et al., 2006).

The Notch signaling pathway is involved in the proliferation of
HSC. Through stimulation of Notch receptors, expansion of HSC
in the niche can be achieved (Mendelson and Frenette, 2014). On
the other hand, the Wnt signaling pathway is involved in HSC
proliferation and differentiation based on the level of activation.
Only mild activation of the Wnt pathway increased HSC
proliferation. Subsequently, by increasing Wnt activation,
differentiation into myeloid precursors and then into
lymphoid precursors occurs. If the Wnt pathway is highly
stimulated, hematopoiesis impairment occurs (Luis et al., 2011).

An HSC niche is a complex system, where many factors affect
HSC function. Because specific information about chicken bone
marrow is lacking in this area, it is necessary to apply information
about mammalian HSC niches to the preparation of an ex vivo
chicken HSC niche.

Ensuring Quiescence in In Vitro Studies
In in vitro models, achieving the quiescent and active states of
HSC is critical for studying the process of hematopoiesis. In a
recent study, Kobayashi et al. (2019) defined key factors

FIGURE 2 | Histological bone marrow specimens from laying hen aged 21 weeks. (A)H&E staining of vascular niche in bone marrow. (B) Endosteal region of bone
marrow stained by Masson’s green trichrome to demonstrate connective tissue based on collagen (green). (C) Sirius red staining of collagen type I (red) in endosteal
niche of bone marrow. (D) Endosteal niche of bone marrow stained by Alcian blue to recognize hyaluronic acid (blue) in extracellular matrix.
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responsible for maintaining a quiescent state in vitro HSC
cultures. The first factor is low oxygen concentration, which is
about 1.3% (Spencer et al., 2014). In mice, it was found that over
80% of quiescent HSC had low adenosine triphosphate levels and
utilize cytoplasmic glycolysis (Simsek et al., 2010). Secondly,
attenuation of metabolic processes necessary for maintaining
quiescent stadium is achieved by relatively high fatty acid
concentration (Kobayashi et al., 2019). Lastly, the crucial
factor is low cytokines concentration because it is well known
that cytokines and growth factors ensure mobilization and
activation of HSC (Jahandideh et al., 2020). Under these
conditions, Kobayashi et al. (2019) were able to maintain
engraftable quiescent HSC for 1 month. To study the
influence of pathogens on activation of HSC and further
differentiation, it must be achieved by changes during the
HSC culture, which can be ensured by perfusion systems with
the flow of the medium. Furthermore, the system must allow the
incorporation of nutrients and cytokines. 3D HSC culture system
prepared by Rödling et al. (2017) was a bioreactor filled with
macroporous hydrogel with niche-mimicking properties, and the
flow of the medium was powered by a peristaltic pump. Their
attention was focused on mimicking steady-state and activation
conditions in HSC culture. They measured cytokine levels in
static and dynamic cultures, and it is not surprising that levels
of cytokines were much lower in dynamic culture because they
washed out the 3D culture. In static culture, strong
upregulation of IGFBP2 and MIF cytokines was found, and
both were described to support proliferation and expansion
of HSC. Hypoxia in cell culture can be easily achieved by
packing the cell culture chambers with vacuum-sealing
machines (Matthiesen et al., 2021). In hypoxic cells is a
characteristic high expression of hypoxia-inducing factor
(HIF), and quiescent HSC express high levels of HIF-1α
(Takubo et al., 2010).

Impacts of Avian Immunosuppressive
Diseases on Bone Marrow-Derived Cells
Most diseases cause immunosuppression because disease
agents must overcome the organism’s immune barrier. In
vitro studies in this area generally have been conducted
with individual bone marrow-derived cells, but we lack
information about direct impacts on HSC and
hematopoiesis as a whole. A better understanding of
immunosuppression is important for determining better
preventive and diagnostic mechanisms for avian diseases
(Gimeno and Schat, 2018). Avian immunosuppressive
diseases have been described in detail in reviews by Schat
and Skinner (2014) and by Gimeno and Schat (2018), so we
have narrowed our focus to summarizing information about
avian diseases and their impacts on bone marrow-derived cells
cultured in cell culture wells and flasks. To date, a methodology
for generating cells from the bone marrow in chickens has been
described only for dendritic cells (Wu et al., 2010). Therefore,
most studies in this area have been focused on the main
antigen-presenting cells (Table 2).

Deriving Chicken Stem Cells From Bone
Marrow
Standard methods for avian stem cells culture are described in a
review by Farzaneh et al. (2017). Derivation of HSC niche cells is
the first step in cell culture preparation. In chickens, methods
have been described for isolating HSC and MSC. In the case of
avian HSC, the usual sources are chicken femur and tibiotarsus.
The ends (epiphysis) of the bones are cut, and their content is
flushed with sterile Dulbecco’s phosphate-buffered saline without
Ca and Mg (DPBS). Cell aggregates in the flushed content of the
bones must be disaggregated by pipetting and sieved through a
40-μm cell strainer. Subsequently, bone content diluted in DPBS
is loaded onto an equal volume of Histopaque®-1,119 (1.119 g/ml
at 25°C) and centrifuged at 1,200 g for 30 min. Cells at the
interface are collected and then washed two times with PBS.
Cells are cultured in complete RPMI-1640 medium with 10% of
chicken serum at 41°C and 5% CO2 (Wu et al., 2010). Anti-
chicken CD45 phycoerythrin (PE)-conjugated antibody
(SouthernBiotech, Birmingham, AL, USA) can be used in
combination with anti-PE microbeads (Miltenyi Biotech,
Bergisch Gladbach, Germany) to isolate HSC by magnetic-
activated cell sorting.

MSC can be embedded simultaneously with HSC into 3D cell
culture to improve the biocompatibility of the culture. MSC can
be isolated from compact bones of the femurs and tibiotarsus of
day-old chicks. The bone marrow must be completely washed
out, and bones are then chopped into small pieces. Bone
fragments are disaggregated in Dulbecco’s modified Eagle’s
Medium (DMEM) with 0.25% collagenase and then incubated
in a shaking bath for 60 min at 37°C and 180 rpm. Suspension
with bone fragments is filtered through a 40-μm cell strainer.
Subsequently, the cell suspension is washed in DMEM, then
placed in complete DMEM, and transferred into a humidified
incubator at 37°C and 5% CO2. After 24 h of incubation, non-
adherent cells are removed, and adherent cells are considered as
MSC (Adhikari et al., 2019; Adhikari et al., 2020).

Three-Dimensional Cell Cultures
In vitro studies are the gold standard for studying various cell
types and for understanding the pathogenesis of diseases. Classic
culture using plastic culture wells or dishes, where cells have
adhered to the surface, does not imitate cell niche
microenvironment inside the body. Very little attention has
been given to the use of 3D cell cultures in avian models. It
has been studied predominantly in embryonal cells, such as
primordial germ cells (Chen et al., 2018), intestinal epithelial
cells (Pierzchalska et al., 2019), or chicken bone marrow cells as
support for osteogenesis of human stromal cells (Yang et al.,
2020). Therefore, our current knowledge about 3D stem cell
cultures comes from studies in mammals. An in vitro HSC
niche cell culture model has never been studied in avian species.

Two-dimensional (2D) cell culture has some disadvantages, as
explained by Kapałczyńska et al. (2018). Such cell cultures do not
imitate the natural structure of tissue and do not provide cell-to-
cell and cell-to-microenvironment interactions. Adherence to the
plastic surface causes cells to take on an unnatural flattened shape
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and changes their morphology. In contrast to tissue, cells in 2D
cultures have unlimited access to oxygen, nutrients, metabolites,
and signaling molecules. Finally, 2D cell cultures cause changes in
gene expression and topography of the cells in comparison with
the in vivo environment.

Hydrogel Scaffolds
All limitations of 2D cell cultures hinder the study of cell
proliferation and differentiation in ways that are similar to
doing so in tissue. For these reasons, scaffolds based on
hydrogels have been developed for 3D cell culture, and the
scaffolds should mitigate these limitations. Caliari and Burdick
prepared a practical, focused review as a hydrogel selection guide
(Caliari and Burdick, 2016).

Three-dimensional HSC culture requires biocompatible
materials that ensure imitation of bone marrow niche
elements as influencers of HSC fate. ECM of the bone marrow
is composed of the most prevalent collagen structural proteins
(Kramer et al., 2017) and then the important laminin and

fibronectin proteins (Zhang P. et al., 2019) that are necessary
for the growth, development, proliferation, and differentiation of
HSC. These proteins express integrin-binding domains termed
RGD. HSC express on their surfaces such RGD-binding integrins
as α4, α6, α7, α9, and β1 that play important roles in cell
development and proliferation (Zhang P. et al., 2019).
Collagen I, collagen IV, laminin, and fibronectin together have
been able significantly to increase HSC expansion and induce
greater myeloid progenitor cell expansion (Celebi et al., 2011).
Not only ECM but also niche cells contribute to the production of
molecules that build a hematopoietic niche. The MSC-based
scaffold has been shown to provide signaling molecules for
HSC, because αIIb, αV, and β3 integrins were induced in HSC
within decellularized ECM scaffolds derived from SCP-1+ MSC.
These findings support the contribution of MSC to the
modulation of HSC function by cell-to-cell contact (Kräter
et al., 2017).

Leisten et al. (2012) performed a coculture of HSC with MSC
in collagen-based hydrogel and revealed some useful findings. A

TABLE 2 | Effects of avian diseases on avian bone marrow-derived cells in in vitro experiments.

Cell type Causative agent Effect of pathogen on
cells

Bone marrow mononuclear
cells

ALV-J Inhibition of differentiation into DC and maturation of DC. Induction of apoptosis. Reduction
of TLR1, TLR2, TLR3, MHC-I, and MHC-II expression in surviving DC (Liu et al., 2016a)

Bone marrow mononuclear
cells

CAV Infection of cells from chicks 6 days old but decreasing numbers of infected cells in chicks
28 days old. Increasing replication in cells until 48 h post-infection (McNeilly et al., 1994)

Mesenchymal stem cells IBDV Increasing replication of IBDV in MSC 6, 24, 48, and 72 h post-infection (Khatri and Sharma,
2009)

Macrophages MDV, HVT, IBV, REV, Adenovirus, ILV, reovirus,
IBDV, NDV

Adenovirus, ILV, reovirus, IBDV, and NDV were found to replicate in MA and change their
morphology. MA were resistant against MDV, herpesvirus of turkeys (HVT-FC126), IBV, and
REV (von Bülow and Klasen, 1983a)

Macrophages MDV Lymphokine-activated MA caused growth inhibition of MDV T-lymphoblastoid cell line (von
Bülow and Klasen, 1983b)

Dendritic cells AIV H9N2 Upregulation of genes involved in signal transduction, transmembrane transport, and
inflammatory responses. Downregulation of genes involved in metabolic processes and
MHC-I antigen presentation (Liu et al., 2020)

Dendritic cells Pustulan (C type lectin ligand) Pustulan induced the same expression of MHC-II and pro-inflammatory cytokines as did IBV.
Moreover, pustulan induced CD4+ T-cell response against IBV (Larsen et al., 2020)

Dendritic cells IBDV Increase in CD40 and CD86 expression. Stimulation of CD4+ lymphocytes (Liang et al., 2015)
Dendritic cells LPAI, HPAI LPAI H5N2 caused rapid increase in IFN-α/β expression. Together, HPAI H5N2 and H7N1

caused upregulation of IL-8, IFN-α, and IFN-γ and of TLR3 and TLR21 (Vervelde et al., 2013)
Dendritic cells Salmonella enteritidis Increased expression of CD40, CD80, andMHC-II molecules and of IL-6 and IL-12 cytokines

(Kamble et al., 2016a)
Dendritic cells IBDV Increased expression of CD86 andMHC-II. Slightly higher apoptosis and necrosis levels after

IBDV activation. Higher production of Th1 cytokines IFN-γ and IL-12α and of TLR3 (Yasmin
et al., 2015)

Dendritic cells Salmonella enterica serovar Gallinarum Elevating expression of IL-6, IL-10, and IFN-γ in stimulated DC and production of IL-2 in
coculture with CD4+ T cells (Kamble et al., 2016b)

Dendritic cells IBDV Genome-wide profiling with upregulating genes involved in oxidative phosphorylation, T cell
receptor, and IL-17 signaling pathways (Lin et al., 2016)

Dendritic cells Velogenic and lentogenic strains of NDV Higher capacity of velogenic strain to replicate in lipopolysaccharide-activated DC. Velogenic
strain caused stronger cytokine production than did lentogenic strain (Xiang et al., 2018)

Dendritic cells ALV-J Infection of DC in early phases of differentiation and induction of apoptosis by disruption of
nutrient processing and metabolic function (Liu et al., 2016b)

Dendritic cells Lactobacillus johnsonii Increased expression of CD40, CD86, and MHC-II molecules; IL-12, IFN-γ, IL-1β, and IL-6
cytokines; and CXCLi1 and CXCLi2 chemokines. Upregulation of TLR2 and TLR5 expression
(Huang et al., 2020)

Note. AIV, avian influenza virus; ALV-J, avian leucosis virus-J; CAV, chicken anemia virus; DC, dendritic cells; HPAI, highly pathogenic avian influenza; HVT, herpesvirus of turkeys; IBDV,
infectious bursal disease virus; IBV, infectious bronchitis virus; IFN, interferon; ILV, infectious laryngotracheitis virus; LPAI, low pathogenic avian influenza;MA,macrophages; MDV,Marek’s
disease virus; MHC, major histocompatibility complex; MSC, mesenchymal stem cells; NDV, Newcastle disease virus; REV, reticuloendotheliosis virus; TLR, toll-like receptor.
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collagenous matrix is optimal for HSC migration and
proliferation. Proliferation marker Ki67 was highly expressed,
suggesting high self-renewal in HSC. MSC in coculture produce
fibronectin and osteopontin, and they support collagen I
synthesis to form a hematopoietic niche. MSC isolated from
the bone marrow in collagen-based hydrogel stimulated higher
levels of CD34+ HSC. This ability was proven only in the case of
MSC derived from the bone marrow, so coculture with bone
marrow-derived HSC is necessary for the applicability of bone
marrow MSC (Leisten et al., 2012). Collagen-based hydrogels
seem to be a promising platform for HSC 3D cell culture, but
naturally based hydrogels have shortcomings in terms of their
mechanical properties. These hydrogels have limitations with
regard to controlling the material stiffness and elasticity. Holst
et al. (2010) found that the addition of tropoelastin, which
changed stiffness and elasticity, caused greater expansion of
hematopoietic progenitor cells. For this reason, synthetic
hydrogels with easier controllability of stiffness have been
developed.

Polyacrylamide (PAM) has a uniquely tunable mechanical
character that allows setting up optimal stiffness and elasticity
(Kandow et al., 2007). As indicated by YM, tensile stiffness of the
bone marrow has been established to be in the range
0.25–24.7 kPa at the physiological temperature (Jansen et al.,
2015). In a recent study with ECM ligand-coated PAM, it was
suggested that biophysical elements combined with ligands
(laminin or fibronectin) of the HSC niches directly modulate
HSC fate decisions (Choi and Harley, 2017).

Synthetic hydrogels based upon polyethylene glycol (PEG)
present another choice for culture with tunable stiffness (Carthew
et al., 2018). The biggest advantage of PEG is its enormous
biocompatibility (Tsou et al., 2016). Macroporous PEG-based
hydrogel is indicated as a great approach for mimicking an HSC
niche because it reflects 3D bone marrow regions. Coculture with
bone marrow-derived MSC in PEG-based hydrogel led to the
much higher proliferation and self-renewing capacity of HSC (as
in the natural environment) compared with ordinary 2D cell
culture (Raic et al., 2014). PAM- and PEG-based hydrogels or
scaffolds do not provide cell adhesion and support proliferation,
but this disadvantage can easily be overcome by conjugation with
RGD peptides. This treatment ensures MSC (Sawyer et al., 2005)
and HSC adhesion and proliferation (Raic et al., 2014; Tsou et al.,
2016).

Hydrogels with synthetic crosslinkers can be prepared based
on hyaluronic acid, which allows for easier stiffness tunability. On
the other hand, fully synthetic hydrogels are composed of
chemically defined components that ensure easy stiffness
tunability, administration of adhesive proteins, and cell
recovery, but biocompatibility is lower (Tibbitt and Anseth,
2009). The main components of these hydrogels consist of
polymers, such as polyvinyl alcohol or dextran with
crosslinkers such as PEG that connect polymer chains (Caliari
and Burdick, 2016). Hyaluronic acid-based hydrogels can be
enriched with carbon nanotubes to ensure antioxidant
properties, thereby supporting HSC proliferation and
pluripotency and protecting against oxidative stress (Zhang Y.
et al, 2019). Results from testing these hydrogels in mammalian

models show that this technique is promising for application in
avian models. Host–pathogen interactions can be conducted
simply on hydrogels embedded in cell culture. The hydrogels
also can be included in advanced cell culture systems, such as
organoids and organ-on-a-chip (OCM), where interactions with
pathogens can be studied (Liu et al., 2019; Feaugas and
Sauvonnet, 2021).

Nanofiber Scaffolds
Several synthetic materials have been used to mimic the bone
marrow niche. Among these are polycaprolactone (PCL),
polylactic acid, polyurethane, and polyethylene terephthalate.
These polymers have several limitations, including lower
biocompatibility, hydrophobicity (compared with cells niche),
and lack of binding sites for cell adhesion (Ferreira and Mousavi,
2018). On the other hand, synthetic materials have good
mechanical properties, are highly reproducible, can be
produced at a low cost, and do not stimulate the activation of
immune cells (Tallawi et al., 2015; Kim T. E. et al., 2016).

The absence of biocompatibility and binding sites can be
overcome relatively easily by blending polymers with ECM
proteins and coating them with adhesion molecules. Ma et al.
(2008) blended poly(DL-lactide-co-glycolide) polymer with
collagen I to create nanofibers by electrospinning method and
then coated nanofibers with E-selectin. This nanofiber scaffold
increased HSC capture by 44% within 30 min and by 40% within
60 min. Biocompatibility can be increased by the inclusion of
other HSC niche cells. HSC coculture with MSC on poly-L-lactic
acid nanofiber scaffold led to greater expansion, purity, viability,
and clonogenicity of HSC (Darvish et al., 2019).

PCL is widely used in tissue engineering and drug delivery
(Chen and Lin, 2020). It is likewise often used in 3D cell cultures,
where it promotes the proliferation and differentiation of various
kinds of cells (Kim T. E. et al., 2016). PCL is a biocompatible and
biodegradable polymer with adjustable hydrophobicity and cell
adhesion abilities. Hydrophilicity can be enhanced by simple
sodium hydroxide treatment (Bosworth et al., 2019). Cell
adhesion and biocompatibility may be improved by coating
with several of the aforementioned proteins (collagens,
fibronectin, laminin, and RGD peptides) to mimic an HSC
niche (Tallawi et al., 2015). In recent years, some experiments
have been performed that lent support to the importance of PCL
coating with proteins. Mousavi et al. (2019) coated PCL
nanofibers with collagen I. Coating caused higher total cell
counts (58 × 38-fold) and higher numbers of CD34+ cells (20-
fold × 2.6-fold) compared with 2D cell culture. The ability to form
colonies was significantly stronger in 3D cell culture based on the
colony-forming assay. Fibronectin coating also has been shown to
have a significant effect on HSC expansion. HSC cultured on
fibronectin-coated PCL nanofibers have significantly greater
expansion and expression of genes related to self-renewal.
Greater expression of CD34 and CD45 markers in cells
cultured on fibronectin-coated PCL nanofibers has been
observed (Mousavi et al., 2018). Based on these findings, it can
be assumed that PCL nanofiber coating promoted interactions
between cells and provided a larger cell attachment area for cell
expansion. In another comparative study, fibronectin-coated
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surface proved to have higher expansion potential in HSC and a
higher percentage of CD34+ and CD45+ cells compared with
when collagen I coating was used. Probably this is because
fibronectin provided a larger surface for cell attachment and
stronger adhesion forces in HSC (Kang et al., 2016). A supporting
role of MSC with HSC has been proven in many cocultures on
various materials. Total cell counts and percentages of CD34+

cells were significantly higher in coculture of HSC with MSC on
PCL nanofibers compared with culture without MSC. The
authors explained that the greater adhesion surface provided
by MSC and thus higher proliferation rate of HSC contributed
to greater HSC expansion (Ferreira et al., 2012). Moreover, the
differentiation potential of HSC cultured on PCL nanofibers was
also improved in comparison with 2D cell culture (Dehdilani
et al., 2016). The results of current studies with PCL nanofibers
point to positive effects on HSC self-renewal, differentiation, and
migration. It is necessary, however, to coat PCL nanofibers with
proteins and peptides, as well as to evaluate nanofiber thickness
and scaffold pore size to ensure better biocompatibility.

Microfluidic cell cultures have been described for studying
host–pathogen interactions (Barrila et al., 2018), and these
systems can be enriched by PCL nanofibers scaffold to mimic
various tissues. Based on this approach, pathogen-infected cells or
pathogens with uninfected cells can be cultured to study
host–pathogen interactions (Kim et al., 2019).

Rotating Wall Vessel Culture
A rotating wall vessel (RWV) is a rotating cylinder filled with a
cell culture medium where cells are constantly falling through the
medium. In contrast to scaffold-based cell cultures, therefore,
RWV cell culture allows cells to be in constant movement. Cells
grown on culture plastic surfaces are collected and incubated with
microcarrier beads for attachment (Nickerson et al., 2007).
Microcarrier beads can be coated with ECM compounds, such
as collagen (Radtke and Herbst-Kralovetz, 2012) or hyaluronic
acid (Skardal et al., 2010). Cells attached to the beads are replaced
with the RWV, and rotation is initiated. Within the RWV, cells
can respond to chemical gradients and react with active molecules
and microorganisms, and that means RWV cell culture can be
used for cell differentiation and host–pathogen interaction
studies. After an experiment, cells can easily be removed from
the microbead carriers for further culture or evaluation
(Nickerson et al., 2007). Pathogens can be added directly to
the RWV or to the cell culture after recovery from RWV
(Barrila et al., 2018).

Organ-on-a-Chip Cell Culture
Dynamic processes in the bone marrow can be imitated by
microfluidic technology based upon OCM. OCM consists of
micro channels with a flowing medium separated by porous
membranes that allow cells to remain in neighboring
chambers (Barrila et al., 2018). In the case of HSC 3D culture
preparation, the chambers can be filled with materials having a
structure similar to that of the bone marrow. Furthermore, MSC
can be precultured on chambers where they create an HSC niche
by producing a stroma and such ECM components as fibronectin.
HSC cultured on OCM have been found to remain in a primitive

CD34+ state and be capable of differentiation and long-term
culture for 28 days (Sieber et al., 2018). Similarly, microfluidic
technology has been used to create a multigradient hydrogel
system for HSC proliferation and differentiation assays within a
3D environment where surrounding ECM components and niche
cells can be manipulated (Mahadik et al., 2014). For studying
disease pathogenesis, disease causative agents can flow into the
microchannels, and then cultured cells can be recovered and
evaluated by morphological, genetic, and biochemical analyses
(Kim H. J. et al., 2016). Figure 3 provides a schematic
presentation as to the possible use of 3D HSC cell culture to
study interactions with pathogens.

Polydimethylsiloxane (PDMS) is a commonly used polymer
for OCM preparation and based on PDMS was developed 3D
bone marrow on a chip with precultured MSC composed of two
microchambers. In the top chamber, a coculture ofMSC andHSC
was performed, and the bottom chamber was separated by a
porous membrane where the medium flows (Kefallinou et al.,
2020). These membrane systems can be used to study
host–pathogen interactions. Staphylococcus aureus infection
model was used to study interactions with neutrophils,
macrophages, and dendritic cells on poly(ε-caprolactone)
nanofiber membrane. In this culture system, immune cells
secreted TNF-α and IL-1α in comparison with 2D cell culture;
therefore, 3D culture mimics standard inflammatory response as
in the organism (Lee et al., 2021). The OCM culture can use
scaffold-based cultures. Di Maggio et al. (2011) described a
ceramic scaffold-based perfusion system with embedded MSC
to mimic an HSC niche. Additionally, the platform allowed easy
insertion of cytokines, growth factors, and potentially disease
causative agents.

OCM cultures to study host–pathogen interactions were used
mainly for mimicking respiratory and digestive tract disease
pathogenesis. The importance of fluidic-based systems showed
the study of Sunuwar et al. (2020). Luminal flow in their jejunal
enteroid chip was able to stimulate the production of cyclic
guanosine monophosphate upon exposure to heat-stable
enterotoxin A from enterotoxigenic Escherichia coli. Similarly,
Villenave et al. (2017) prepared microfluidic-based gut on chip
and continuous flow enhanced viral replication and subsequently
enterocyte damage. Mimicking physiological stretching of the gut
caused by peristalsis can be an important factor for the increased
invasion of some bacteria. For instance, Shigella human bacteria
causing severe intestinal damage uses the peristaltic movement of
the intestine wall and luminal flow to enhance their invasion
potential (Grassart et al., 2019). The liver represents the most
important organ for metabolic processes, and the liver on a chip is
a valuable tool for studying the pathogenesis of hepatic diseases.
Ortega-Prieto et al. (2018) prepared a microfluidic collagen
scaffold-based liver on a chip with polarized primary human
hepatocytes to examine the pathogenesis of hepatitis B virus, and
they successfully imitated the production of cytokines and innate
immune response as in the case of patients infected by hepatitis
B virus.

OCM cultures were successfully used to imitate respiratory
disease pathogenesis. Superinfection of influenza virus and S.
aureus was observed in a virus–bacteria coculture on lung
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alveolus on chip (Deinhardt-Emmer et al., 2020). OCM cultures
can play a role in models where it is impossible to study
interactions in vivo. Surfactants on the surface of the
respiratory tract create a part of a protective response against
respiratory pathogens. Surfactant-deficient animals have high
lethality; therefore, it is impossible to study pathogenesis in
these animals. For this reason, Thacker et al. (2020) developed
a lung on a chip with three layers, with the top layer composed of
alveolar epithelial cells with macrophages with the bottom
composed of endothelial cells and air–liquid interface.
Through time-lapse imaging, they can reveal the dynamics of
the initial phases of Mycobacterium tuberculosis infection and
describe the host protective role of surfactants. The usability of a
lung on a chip was also proved in viral infection models.
Additionally, the impact of a lung on a chip devise on
increased virulence of several serotypes of influenza virus was
also proved (Si et al., 2019).

In a recent year, OCM is being developed to ensure that several
probiotic bacteria strains are maintained for longer periods of
time of more than 1 week; therefore, it can be used for studying
the long-term effects of pathogens with the chronic progression of
pathogenesis (Kim T. E. et al., 2016). Additionally, host–pathogen
interactions using OCM cultures can be performed with various
oxygen levels or under hypoxia, which is necessary for HSC
quiescence (Shah et al., 2016).

Using Three-Dimensional Cell Cultures to
Study Host–Pathogen Interactions
The multipotency of HSC enables to differentiate them into
various immune cells and study how pathogens interfere with
hematopoiesis. The process of preparation includes cell seeding,
the inclusion of cocultured cells, and growth factors and

cytokines, which ensure HSC differentiation. Inclusion of
pathogens can be performed in every step of the process, so
this enables to study the disruption of hematopoiesis. The scheme
of workflow for host–pathogen study using scaffold-based 3D
stem cell cultures is described in Figure 4.

Seeding of Cells
Cells can be seeded sequentially or simultaneously. It is better to
seed them simultaneously because bone marrow HSC and MSC
are located right next to each other. This system of cell seeding
ensures homogenous localization (Baldwin et al., 2014). To
mimic a bone marrow environment, scaffold-based cultures
should be preferred. Then it is possible to seed cells on the
upper sides of hydrogels or nanofiber scaffolds for cell migration
studies. For the achievement of homogenous localization, cells
can be mixed in liquid hydrogels. After the addition of crosslinker
or through temperature-induced solidification, the creation of
solid hydrogels is achieved (Rizwan et al., 2021). In the case of
nanofiber scaffolds, cell localization is highly affected by pore size.
Therefore, it is important to evaluate scaffold structure by
scanning electron microscopy; otherwise, cell infiltration can
be improved by sonication (Lee et al., 2011).

Medium Exchange
Culture medium exchange is an important factor to mimic the
bone marrow environment. After the exchange of the medium,
cell culture losses cytokines and other substances produced by
cocultured cells and pathogenic agents. On the other hand, the
medium brings new nutrients to the culture. Low fluctuation in
amounts of endogenic and exogenic factors entering the culture
can be achieved by the exchange of low amounts of media in static
cultures or a proper setup of a pump in microfluidic systems
(Baldwin et al., 2014). The evaluation of stability in cell culture

FIGURE 3 | Simplified scheme using 3D cell culture with microfluidic system to study host–pathogen interactions. The main part of the system is a glass slide with
chamber covered by glass coverslip, where hydrogels or nanofibers scaffold can be included. In the cell culture chamber, mesenchymal stem cells (MSC) and
hematopoietic stem cells (HSC) can be cocultured on scaffold. The chamber is connected to a syringe by outlet channel, and flow of medium is produced by syringe
pump through negative pressure. Cell culture medium is introduced into the chamber by inlet channel from the vessel. To study host–pathogen interactions, the
medium vessel can be enriched via the inlet for inclusion of pathogens or other stimulants, such as metabolites, toxins, vitamins, or minerals. Adapted from Kim et al.
(2019).
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can be measured by biosensors in the culture because they can be
used for the evaluation of oxygen, nutrients, pH, and metabolites.
The problems of the current approaches in electrochemical
sensing in 3D cultures are reviewed by Oliveira et al. (2021).
In a dynamic microfluidic system, channel volumes and dilution
requirements must be determined to obtain reliable results by
detection systems (Castiaux et al., 2019). ELISA is used for the
detection of molecules in a culture medium; therefore, it can be
used for measurements of changes in metabolites (Kim et al.,
2019).

Evaluation In Situ
Standard morphological viability assays can be performed by
fluorescence microscopy using confocal laser scanning
microscopy (CLSM). CLSM can easily evaluate the location of
cells and migration of cells in a scaffold by stacking images (Kim
T. E. et al., 2016). The combination of CLSM with matrix-assisted
laser desorption ionization-time (MALDI) proposes a complex
analysis method. Machalkova et al. (2019) used CLSM to localize
cells with fluorescence markers of apoptosis and proliferation.
They also used MALDI for the detection of drugs of interest on
tissue sections obtained from 3D cell culture. The principle of
MALDI and usability in pathogen detection was reviewed by
Singhal et al. (2015). Using CLSM can be problematic for

scaffolds with higher thickness because of the loss of
fluorescence signals of labelled molecules from deeper layers of
more than 100 µm. On the other hand, light sheet fluorescence
microscopy was able to create complete 3D tomography of tumor
spheroids (Lazzari et al., 2019). Samples with thicknesses of more
than 1 cm can be analyzed (Agrawal et al., 2021). After high-
resolution images are obtained, the captured pictures can be
analyzed by appropriate software equipment. Usable software-
based analyses for 3D cell culture were reviewed by Agrawal et al.
(2021). For instance, FluoroCellTrack is usable for high-
throughput analyses of fluorescently labeled cells in a
microfluidic system. Therefore, FluoroCellTrack can detect
cells or droplets in a flow in a similar manner to flow
cytometry but for longer periods of time (Vaithiyanathan
et al., 2019). On the other hand, real-time monitoring of cells
embedded in a scaffold can be performed byMetaXpress Software
and ImageXpress Micro System, which allows to study the
migration of cells toward the gradients (Agrawal et al., 2021).

Cell Recovery
Another group of analytical methods comprises techniques after
recovery of cells from 3D cell culture. However, the crucial step is
cell recovery, which can cause serious problems, because the cell
can be destroyed due to inappropriate treatment. Enzymatic cell

FIGURE 4 | Schematic presentation of scaffold-based 3D cell culture to study influence of pathogens on hematopoiesis. Isolated hematopoietic stem cells (HSC)
and cocultured cells can be infected before insertion to culture or after culturing in 3D culture. To study differentiation potential of infected HSC, cytokines and growth
factors can be added and can initiate differentiation in various immune cells. At the same time, pathogens can be included to study how these disease causative agents
can disrupt differentiation in immune cells. For in situ evaluation, there are some usable techniques. Imaging techniques include confocal laser scanningmicroscopy
(CLSM), scanning electron microscopy (SEM), and light sheet fluorescence microscopy (LSFM). Content of molecules released by infected cells can be measured by
standard ELISA method. Software-based techniques such as FluoroCellTrack can be used for evaluation of cells in flow, in microfluidic systems, or embedded cells in a
scaffold. For monitoring of culture conditions, microchips for electrochemical detection of important measurable parameters such as oxygen, carbon dioxide, nutrients,
and metabolite levels can be included. If it is possible to recover cells from the cultured scaffold, cells can be evaluated by antibody-based techniques, genome-wide
profiling, and microscopy techniques such as transmission electron microscopy (TEM) for intracellular structure imaging.
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recovery is a classic method for cell liberation from the hydrogel
and nanofiber scaffolds. However, it must be taken with great care
to avoid the degradation of cell receptors. The enzyme used for
cell recovery is selected based on scaffold material hyaluronic acid
(hyaluronidase), collagen (collagenase), et cetera (Caliari and
Burdick, 2016). Cells cultured on nanofibers are usually
collected by trypsinization (Kim T. E. et al., 2016; Kim et al.,
2018). Enzyme concentration seems to be critical for achieving
optimal cell liberation. Virumbrales-Muñoz et al. (2019) dealt
with the optimization of cell recovery from collagen-based
hydrogel in a microfluidic system. They tracked enzymatic
degradation by confocal reflection microscopy, and the
degradation rate was highly correlated with the concentration
of the collagenase. For further experiments, collagenase’s highest
concentration (8 mg/ml) was used and applied to the microfluidic
system, and the scaffold was degraded. For 10 min, the majority
of cells (80%) was extracted. This recovery method did not
negatively affect the viability (above 90%) after cell recovery,
and it was possible to reseed cells into another hydrogel. Cells
were then used for gene expression analyses, and additionally
cells were usable for image flow cytometry analyses, which
support the usability of this approach as a gentle method to
obtain cells from hydrogel scaffolds. Photodegradable PEG-
based hydrogels propose more than easily degradable material
for cell recovery. Shin et al. (2014) prepared photogel
functionalized with anti-CD4 and anti-CD8 antibodies to
isolate lymphocytes from a heterogenous cell population.
Then, cell attachment sites were visualized by fluorescent
microscopy; and then through site-specific exposure to UV
light, CD4+ and CD8+ lymphocytes were successfully released.
Isolating individual cells allows novel microscopy techniques,
such as laser capture microdissection, which cut off the block
from the scaffold, and subsequently, appropriate enzymes are
used to digest scaffold and release cells (Oldenhof et al., 2020).

Post-Harvest Evaluation of Cells
Post-harvest evaluation of cells in disease models comprises flow
cytometry analyses of apoptotic and necrotic cells, phenotype
markers, and activation markers in antigen-presenting cells.
However, more comprehensive analyses can be performed
through gene expression analyses of pro-inflammatory and
anti-inflammatory cytokines, chemokines, receptors, proteins
involved in programmed cell death, and pathogens
(Kalaiyarasu et al., 2016). Genome-wide profiling of infected
cells can provide deeper information about pathways involved
in pathogen-induced immunosuppression (Lin et al., 2016).
Various microscopy techniques can be used for the detection
of pathogens, but precisely, the infection can be analyzed by
transmission electron microscopy, which provides analyses of

intracellular changes in response to infection (Rajput et al., 2014).
The high-content single-cell technologies provide wide spectrum
techniques to study host–pathogen interactions in different
points of view, and all of them and their usability are reviewed
by Chattopadhyay et al. (2018).

CONCLUSION AND FUTURE
DEVELOPMENTS

The bone marrow as a source of immune cells in adult birds is
disrupted by numerous diseases. Very little is known about these
impacts in avian models. Immunosuppression caused by many
avian diseases can be mitigated if we will have a better
understanding of their pathogeneses, and therefore, we can
create more effective vaccines and vaccination programs. That,
in turn, will facilitate the realization of the genetic potential of
poultry for maximum production while improving welfare in
flocks. Poultry flocks are also a source of zoonotic diseases, and
so preventing avian disease is very important to ensure human
health globally. For these purposes, the creation of in vitro
avian HSC niches for studying diseases’ pathogeneses can
provide a valuable tool for improving global poultry health.
Moreover, it can be used for studying pharmacokinetics and
the effects of metabolites and additives on hematopoiesis.
First, however, it is necessary to create an HSC niche
in vitro. This review is a source of knowledge obtained from
mammalian models that can be applied to achieve that
objective.
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GLOSSARY

2D Two-dimensional

3D Three-dimensional

Arteriolar endothelial cells

BC B cells

BCP B cell precursors

BG Basophil granulocytes

CD4 CD4+ T cells

CD8 CD8+ T cells

CLP Common lymphoid progenitors

CMP Common myeloid progenitors

CLSM Confocal laser scanning microscopy

CSF Colony-stimulating factor

DC Dendritic cells

DMEM Dulbecco’s Modified Eagle’s Medium

DPBS Dulbecco’s phosphate-buffered saline without Ca and Mg

ECM Extracellular matrix

EG Eosinophil granulocytes

GMP Granulocyte-monocyte progenitors

HG Heterophil granulocytes

HSC Hematopoietic stem cells

HIF Hypoxia-inducing factor

MA Macrophages

MALDI Matrix-assisted laser desorption ionization-time

MO Monocytes

MODC Monocyte-derived dendritic cells

MODM Monocyte-derived macrophages

MSC Mesenchymal stem cells

NK Natural killer cells

OCM Organ-on-a-chip

P Plasmocytes

PAM Polyacrylamide

PCL Polycaprolactone

PDMS Polydimethylsiloxane

PE Phycoerythrin

PEG Polyethylene glycol

RWV Rotating wall vessel

SCF Stem cell factor

SEC Sinusoidal endothelial cells

TC T cells

TCP T cell precursors

YM Young’s modulus
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