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Abstract: The presented paper deals with the issue of selecting a suitable system for monitoring
the winter wheat crop in order to determine its condition as a basis for variable applications of
nitrogen fertilizers. In a four-year (2017–2020) field experiment, 1400 ha of winter wheat crop were
monitored using the ISARIA on-the-go system and remote sensing using Sentinel-2 multispectral
satellite images. The results of spectral measurements of ISARIA vegetation indices (IRMI, IBI)
were statistically compared with the values of selected vegetation indices obtained from Sentinel-
2 (EVI, GNDVI, NDMI, NDRE, NDVI and NRERI) in order to determine potential hips. Positive
correlations were found between the vegetation indices determined by the ISARIA system and indices
obtained by multispectral images from Sentinel-2 satellites. The correlations were medium to strong
(r = 0.51–0.89). Therefore, it can be stated that both technologies were able to capture a similar trend
in the development of vegetation. Furthermore, the influence of climatic conditions on the vegetation
indices was analyzed in individual years of the experiment. The values of vegetation indices show
significant differences between the individual years. The results of vegetation indices obtained by
the analysis of spectral images from Sentinel-2 satellites varied the most. The values of winter wheat
yield varied between the individual years. Yield was the highest in 2017 (7.83 t/ha), while the lowest
was recorded in 2020 (6.96 t/ha). There was no statistically significant difference between 2018
(7.27 t/ha) and 2019 (7.44 t/ha).

Keywords: remote sensing; N crop sensor; ISARIA; Sentinel; nitrogen; variable rate application

1. Introduction

Precision agriculture is a modern way of farming that adapts crop management
practices to the heterogeneity of the soil condition. The main goal is to address the field-
specific spatial variability of soil properties, microclimate conditions, crop vigor and
crop yields. The development of this crop management system is strongly connected
to the progression in agricultural technology, such as Global Positioning System (GPS),
Geographic Information Systems (GIS), Remote Sensing (RS), soil and crop sensors and
more [1,2]. The main advantage of precision agriculture is the efficient use of material
inputs such as pesticides, mineral fertilizers, seeds and fuels according to the requirements
of plants at the particular place and at the right time [3,4].

One of the integral parts of precision agriculture is variable or tagged nitrogen fer-
tilization. The nutrition with nitrogen (N) (amide, ammonium and nitrate N) is the most
important factor that affects the formation of yield and grain quality in cereals [5,6]. The
general aim is to provide the plants sufficient N nutrition at the time of its need and to
prevent its leaching, which would lead to eutrophication of the environment. The yield of
cereals consists of three basic components, namely: number of ears (or heads) per unit area,
number of grains in the ear and the weight of 1000 seeds [7]. A higher N dose generally
increases the crop yield and the number and size of grains [8] but also reduces Nitrogen
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Use Efficiency (NUE) and increases the amount of residual N in the soil, leading to the risk
of nitrogen leaching into groundwater [9–11].

The solution is a variable (targeted) application of N fertilizers, which respects specific
soil conditions, in the form of management zones, and plant nutritional status when
distributing the fertilizer into the soil. Consequently, the higher NUE and the lower risk
of nitrogen leakage into the environment can be expected [12]. It is based on spectral
vegetation measurement (proximal and remote), soil sampling, soil condition mapping or
yield mapping [13,14]. The spatial variability of crop yields can be influenced by many
factors such as evapotranspiration [15], topographic attributes [16] or combined effects of
soil fertility and weed control [17]. The study by Diacono et al. [13] provides an overview
of tools and approaches of precision agriculture for nitrogen management according to
environmental requirements. Spectral measurement to estimate the nutritional status of
plants mostly uses vegetation indices derived from the remote sensing systems of the
Earth [18] or from the ground-based on-the-go systems [19].

For remote sensing purposes, it most often uses data from Landsat 8, Sentinel 2 and
other types of regularly provided satellite imagery of Earth’s surface recordings, making
them an effective remote sensing technique for gathering information over a large area
with a high frequency of repetition [20]. Sentinel-2 (2A and 2B) satellites are equipped
with a multispectral sensor (MSI) containing 13 spectral bands, including a near-infrared
band with a spatial resolution from 10 to 60 m, providing relevant information to support
precision agriculture [21]. Images from Sentinel-2 satellites are publicly available for
free through the Copernicus Open Access Hub with an average repetition rate of 5 days
(2–3 days in mid-latitudes) at data processing levels L1C or L2A. This may be interesting
for the processing of data time series and for the application in precision agriculture.
Product Level-2A provides images of the Bottom of the Atmosphere (BOA) with surface
reflectance [6,22].

Another applicable technology in agriculture is proximal sensing by the on-the-go
crop sensors. These devices are installed directly on the machines and use the measurement
of red and near-infrared (NIR) reflectance for real-time assessment of plant nitrogen status
with the simultaneous application of nitrogen fertilizers by spreader or sprayer. The most
well-known systems include: Yara N-sensor, Crop Circle and Trimble GreenSeeker [23].
The new generation of these devices, such as Fritzmeier ISARIA, combines on-the-go
spectral measurement of the crop stand with soil productivity maps (map-overlay mode).
As shown by Pedersen et al. [24], the combination of soil information with the diagnosis of
plant nitrogen status by spectral measurement has brought the greatest economic benefits
of variable rate application of nitrogen fertilizers.

The aim of the study is to compare the sensor measurement of vegetation status
using the Fritzmeier ISARIA on-the-go sensor system with remote sensing using satellite
images of Sentinel-2 in the perspective of sensitivity and usability for plant diagnosis in
the site-specific crop management of winter wheat.

2. Materials and Methods
2.1. Study Area

The selected localities mapped in the experiment are in the property of SALIX
MORAVA Ltd. Company, Czech Republic. The agricultural company belongs to the
Spearhead Czech Ltd. Business group (SIL CZ), which has been testing the technology
of variable application of nitrogen fertilizers based on the use of sensor technology and
remote sensing since 2012. This study contains data from four seasons (2017–2020) of
growing winter wheat. The field experiment was established in the cadastral area of the
municipality of Zdounky (Czech Republic, district Kromeriz, 49◦13′ N, 17◦18′ E; Figure 1).
According to Quitt [25], climate in the studied region is slightly warm to warm and slightly
damp (T3, MT2). The long-term average annual temperature was 8.2 ◦C in 1981–2010. The
long-term average annual precipitation amount (1981–2010) was 775 mm (Figure 2). The
fields are located at an altitude of 205–390 m a.s.l. Soil types are medium deep Chernozem,
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Haplic Luvisol, Cambisol and Fluvisol. The humus content is moderately high, equal to
2–3%. The soil pH ranges between 6.6 and 7.2. The fields are flat to moderately sloping.
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arable land were selected (Table 1) to be sown with winter wheat (Triticum aestivum L.), 
which was a subject of the ISARIA system and satellite Sentinel-2. Winter wheat was cul-
tivated using the conventional methods every year. Only the winter wheat intended for 
food purposes was monitored (2017: Viriato; 2018: Dagmar; 2019: Viriato; 2020: Viriato). The 
Viriato variety is legally protected and bred by Société RAGT 2n (FR) and the Dagmar 
variety by Limagrain Central Europe Cereals, s.r.o. (CZ, FR). These varieties can be de-
fined as early bakery varieties suitable for milling purposes with similar growth and crop 
management properties. The term of sowing the winter wheat was from the last week of 
September to the first week of October depending on weather conditions. The average 
sowing rate of the model plant was 180 kg/ha, and the same system of N fertilization was 
adopted. 

 
Figure 2. Climatic graph of the studied area (monthly precipitation and temperature): meteorologi-
cal parameters for the period from 2017 to 2020 were measured by the DAVIS Vantage Pro2 mete-
orological station (Davis Instruments, Hayward, CA, USA). Long-term standards (1981–2010) for 
the Zdounky area were calculated on the basis of data available from the Czech Hydrometeorolog-
ical Institute (http://portal.chmi.cz/historicka-data/, accessed 25 October 2021) 
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Figure 2. Climatic graph of the studied area (monthly precipitation and temperature): meteorological
parameters for the period from 2017 to 2020 were measured by the DAVIS Vantage Pro2 meteoro-
logical station (Davis Instruments, Hayward, CA, USA). Long-term standards (1981–2010) for the
Zdounky area were calculated on the basis of data available from the Czech Hydrometeorological
Institute (http://portal.chmi.cz/historicka-data/, accessed 25 October 2021).

The field experiment was performed from 2017 to 2020. Every year, min. 200 ha of
arable land were selected (Table 1) to be sown with winter wheat (Triticum aestivum L.),
which was a subject of the ISARIA system and satellite Sentinel-2. Winter wheat was
cultivated using the conventional methods every year. Only the winter wheat intended
for food purposes was monitored (2017: Viriato; 2018: Dagmar; 2019: Viriato; 2020: Viriato).
The Viriato variety is legally protected and bred by Société RAGT 2n (FR) and the Dagmar
variety by Limagrain Central Europe Cereals, s.r.o. (CZ, FR). These varieties can be defined
as early bakery varieties suitable for milling purposes with similar growth and crop
management properties. The term of sowing the winter wheat was from the last week of
September to the first week of October depending on weather conditions. The average

http://portal.chmi.cz/historicka-data/
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sowing rate of the model plant was 180 kg/ha, and the same system of N fertilization
was adopted.

Table 1. Field experiment overview.

Year ISARIA Sensing
Date

Sentinel-2
Acquisit.

Days
Difference Area (ha) Fields Number of Records (n)

Raw/Filtered

2017 3–11 April 29 March 5–13 477 14 39,819 20,358
2018 17–25 April 21 April 0–4 211 9 24,951 11,597
2019 21 March–5 April 1 April 0–11 259 5 25,880 16,594
2020 17–26 March 18 March 0–8 439 14 40,011 19,655

2.2. Crop Sensing

This study evaluates data from the ISARIA online sensor system and data from
remote sensing using the Sentinel-2 satellite. The data were taken by the ISARIA sensor
system (Table 1) in four vegetation seasons (2017–2020) in production fertilization (N2,
BBCH 30–35). Satellite images were acquired during the entire vegetation period: For the
assessment, one image was selected after the application of fertilizers in the given year.
The image was selected to be cloudless in the studied locality and closest to the time of
the ISARIA measurement. The statistical evaluation was focused on the identification of
differences between the two sensing systems in terms of spectral sensitivity to vegetation
and practical usage of the platforms. The study did not address the options of both sensing
systems to set up nitrogen doses by the variable rate application, as it strongly depends
on the algorithms delivered by the manufacturer (ISARIA) or service provider (remote
sensing) and also specific user settings.

2.2.1. Proximal Sensing by Fritzmeier ISARIA

The recorded data were obtained from the Fritzmeier ISARIA proximal crop sensing
system (Figure 3) during the second topdressing nitrogen application (N2). The device
assesses the vegetation nutritional status based on optical measurement using two sensor
heads sensing a space next to the trajectory of travel. The nutritional status is assessed
by measuring the reflectivity of wheat, barley and rapeseed at a height between 40 and
100 cm from the crop by four active LEDs. The measured values are used for immediate
recommendation of fertilizer dosing according to user settings and are recorded on the
memory card.
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The nutritional status of plants is evaluated by the spectral measurement of crops
using active LED lighting at four spectral wavelengths (660–780 nm). Two vegetation
indices are calculated—ISARIA Biomass Index (IBI), which is related to crop biomass and
ISARIA Reflectance Measurement Index (IRMI) related to chlorophyll content. The IRMI
index detects the nutritional status based on the reflectance of the red, NIR and red-edge
spectral bands. The IBI index is based on the calculation of the reflectance in visible red
and near-infrared radiation. The IBI index is used at earlier stages of development and, in
addition to the amount of biomass, also evaluates the canopy of the stand [26].

The ISARIA system works in two calibration modes and an automatic mode with the
simultaneous use of the background map of the yield potential to specify the production
capacity of the site [27]. For the case of this study, the sensor worked in an absolute mode
with the background map. ISARIA records were downloaded from the board computer as
spatial point data in the shapefile format. Points at a distance of up to 20 m from the plot
boundaries were filtered out of the dataset in order to avoid a possible impact on plot edges
when bypassing obstacles, ramps and exits from the vegetation due to the elimination of
boundary effects.

2.2.2. Remote Sensing by Sentinel-2 Satellite Platform

Sentinel-2 images were selected to be cloudless and taken close to the date of proximal
sensing by ISARIA. The time interval between ground and satellite sensing is presented in
Table 1 by day in order to avoid the low-quality Sentinel-2 images. The longest time interval
was 13 days in 2017, and the least difference was reached during N2 in 2018 (0–4 days).

The datasets were then downloaded from the ESA open hub database as a surface
reflectance product L2A computed by sen2cor [28]. The low-resolution spectral bands of
satellite imagery were resampled to 10 m per pixel by the Sentinel Application Platform
(SNAP) provided by ESA [29], and the cloud mask was applied as a NoData pixel value
based on the scene classification mask derived from the L2A dataset. A set of six vegetation
indices was calculated from multispectral bands (see the list in Table 2) by the ArcPy
(ESRI, Redlands, CA, USA) processing script to produce cloud-free 10 m resolution raster
datasets [27].

Table 2. Sentinel-2 vegetation indices evaluated in the study.

Vegetation Index Equation Reference

EVI Enhanced Vegetation Index 2.5 × (B08 − B04)/((B08 +
6.0 × B04 − 7.5 × B02) + 1.0) Huete et al., (2002) [30]

GNDVI Green Normalized Difference Vegetation Index (B08 − B03)/(B08 + B03) Gitelson et al., (1996) [31]
NDMI Normalized Difference Moisture Index (B08 − B11)/(B08 + B11) Gao (1996) [32]
NDRE Normalized Difference Red Edge Index (B07 − B05)/(B07 + B05) Barnes et al., (2000) [33]
NDVI Normalized Difference Vegetation Index (B08 − B04)/(B08 + B04) Rouse et al., (1974) [34]
NRERI Normalized Red Edge Index (B08 − B06)/(B08 + B05) Klem et al., (2014) [35]

2.3. Data Processing and Analysis

For the given period of time, the value of the vegetation indices of the particular pixel
of the Sentinel-2 satellite image was assigned to each point of the Frizmeier ISARIA online
sensor after the final buffer by the overlay analysis. The flowchart of data processing of both
sensing methods is shown in Figure 4. The spatial analysis of data, field identification, data
merging and visualization of both datasets were realized in the Geographic Information
System ArcMap 10.6.1 (ESRI, Redlands, CA, USA) in the coordinate system WGS 1984.
While the spatial resolution of the Sentinel-2 imagery was 10 m per pixel after resampling
of red-edge spectral bands, the spatial distribution of ISARIA records remained in the
native resolution based on the 1 s acquisition and GPS position of tractor in the field.
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Statistical evaluation (descriptive, regression and ANOVA) was carried out by Statis-
tica 12 (Tibco, Palo Alto, CA, USA). All analyses were performed at a significance level of
p < 0.05.

3. Results

The study aimed at a comparison of vegetation indices obtained from the ISARIA
system (IBI, IRMI) with vegetation indices from the spectral analysis of satellite images
taken by Sentinel-2 (EVI, GNDVI, NDMI, NDRE, NDVI, NRERI). Basic statistical data of
both data sets for the period of 2017–2020 are presented in Table 3. A detailed overview of
basic statistical data of vegetation indices of proximal and remote sensed data for individual
years is shown in Annex 1. Each year, a minimum of 11,000 points were compared. In
total, monitoring was carried out on more than 1400 ha of arable land with winter wheat
(Table 1). The highest average values within the whole period of monitoring were reached
by vegetation index IRMI and the second highest at IBI (Table 3). Both indices were counted
using the ISARIA system within the application of production nitrogen dose to the winter
wheat vegetation. Other indices (from satellite data from the same period) reached lower
values. Maximum values reached 0.9 (NDVI, GNDVI), and the lowest values dropped
below 0 (NRERI and NDMI). The order of the values was as follows: NDVI > GNDVI >
EVI > NDRE > NDMI > NRERI.

Table 3. Results of descriptive statistics—vegetation indices for the period 2017–2020.

Variable N Average MED Min Max VAR SD VC

IRMI 68,204 23.001 23.017 10.667 30.750 3.442 1.855 8.065
IBI 68,204 3.079 3.105 1.070 4.830 0.300 0.548 17.788
EVI 68,204 0.507 0.531 0.137 0.807 0.019 0.137 27.107

GNDVI 68,204 0.656 0.669 0.317 0.865 0.011 0.104 15.859
NDMI 68,204 0.246 0.263 −0.165 0.547 0.024 0.155 62.902
NDRE 68,204 0.486 0.510 0.075 0.755 0.018 0.135 27.691
NDVI 68,204 0.683 0.716 0.223 0.918 0.021 0.143 20.994
NRERI 68,204 0.152 0.153 −0.011 0.347 0.003 0.057 37.380

Legend: N = number of measurements; MED = median; VAR = variance; SD = standard deviation; VC = variance
coefficient; IRMI, IBI = ISARIA vegetation indices; EVI, GNDVI, NDMI, NDRE, NDVI, NRERI = Sentinel-2
vegetation indices.

Selected vegetation indices were evaluated both for the whole vegetation period
(2017–2020; Table 3) and for individual years (Appendix A; Table A1 and Figure A1). The
measured effect shows the annual effect (Appendix A and Figure 5). The highest and
lowest values for the vegetation indices were recorded in 2019 and 2017, respectively.
The values of vegetation indices for individual years were subjected to post hoc analysis
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(Tukey’s HSD test), which revealed that all measured values showed significant differences
between years (supplementary, Table S1). Therefore, the annual effect was significant
for all variants. However, it was most pronounced in vegetation indices obtained by
satellite image analysis. The measured data show (Figure 5) that the ISARIA vegetation
indices showed lower relative differences between individual flights (e.g., IRMI, Figure 5A)
compared to other vegetation indices (e.g., NDRE, Figure 5B).
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Figure 5. Average values of IRMI (part of graph (A)) and NDRE (part of graph (B)) vegetation indices
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The values of vegetation indices (Figures 5 and A1) and values of winter wheat yield
varied between individual years (Table 4). As to the development of the values of vegetation
indices and the yield of the monitored crop, there was no conclusive relation. Yield was the
highest in 2017, while the lowest yield was recorded in 2020. Between 2017 and 2018, the
yield recorded a significant decrease as well as total precipitation totals (supplementary,
Figure S1). In 2020, total precipitation amounts were at 82% of the long-term standard and
yield was the lowest. The highest intensity of precipitation was recorded in June and July
(supplementary, Figure S1), i.e., during the ripening and harvesting periods.

Table 4. Results of descriptive statistics—vegetation indices for the period 2017–2020.

Year Yield (t/ha) ±SD HSD

2017 7.83 0.35 a
2018 7.27 0.19 b
2019 7.44 0.22 b
2020 6.96 0.27 c

Legend: average yield of winter wheat is displayed for the period 2017–2020 (n = 42) ± SD (Standard Deviation).
Different small letters indicate Highly Significant Differences (HSD) between the individual years at a level of
significance p < 0.05 (post hoc Tukey’s HSD test).

Furthermore, the relationship between the vegetation indices was analyzed using
the correlation and regression analysis (Tables 5–7). The ISARIA vegetation indices were
compared with the vegetation indices obtained by the spectral analysis of satellite images,
both in terms of overall (total correlation) and individual images taken in particular years
(Appendix B; Tables A2 and A3). From the measured values (Table 5), it is evident that the
IRMI vegetation index showed a positive correlation with all the other vegetation indices
both in the individual years of the experiment and in general. It was the strongest against
the IBI index, both in total correlation and when comparing data from the individual years
of the experiment. Other vegetation indices showed a more variable dependence on IRMI,
which differed both generally and in individual years. The strength of the relationship
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between IRMI and the other indices decreased as follows GNDVI > NDRE > NDVI > NDMI
> NRERI in terms of overall correlation. Significant differences in the value of r were found
within individual years. The highest one was recorded in 2020, when the vegetation indices
always exceeded 0.77. The lowest values were recorded in 2017 (approximately 0.6).

Table 5. Spearman’s rank correlation coefficient for the IRMI vegetation index in the individual years
and for the whole period (2017–2020).

IRMI IBI EVI GNDVI NDMI NDRE NDVI NRERI
Overall correlation 0.889 0.544 0.608 0.549 0.592 0.585 0.537

2017 0.919 0.608 0.602 0.581 0.624 0.599 0.511
2018 0.954 0.711 0.709 0.726 0.728 0.630 0.747
2019 0.913 0.614 0.676 0.540 0.707 0.671 0.652
2020 0.908 0.775 0.771 0.775 0.761 0.766 0.695

Legend: Red-marked Spearman’s correlation coefficients indicate a significant relationship between IRMI and
other vegetation indices. The strength of this relationship is indicated using colors, red color of the cell indicates a
weak relationship, orange and yellow indicate a moderate relationship and green indicates a strong relationship.

Table 6. Spearman’s rank correlation coefficient for the vegetation index IBI in the individual years
and for the whole period (2017–2020).

IBI IRMI EVI GNDVI NDMI NDRE NDVI NRERI
Overall correlation 0.889 0.708 0.719 0.689 0.703 0.729 0.622

2017 0.919 0.685 0.684 0.641 0.678 0.688 0.577
2018 0.954 0.733 0.745 0.759 0.765 0.692 0.752
2019 0.913 0.642 0.677 0.547 0.695 0.704 0.618
2020 0.908 0.889 0.890 0.886 0.875 0.892 0.819

Legend: Red-marked Spearman’s correlation coefficients indicate a significant relationship between IBI and other
vegetation indices. The strength of this relationship is indicated using colors, the red color of the cells indicates a
weak relationship, orange and yellow indicate a moderate relationship and green indicates a strong relationship.

Table 7. Regression equation of linear dependences.

Dependence Equation

IRMI:EVI y = 0.0379x − 0.3644
IRMI:GNDVI y = 0.0334x − 0.1129
IRMI:NDMI y = 0.0435x − 0.7543
IRMI:NDRE y = 0.0414x − 0.466
IRMI:NDVI y = 0.043x − 0.307
IRMI:NRERI y = 0.0159x − 0.2128

IBI:EVI y = 0.1716x − 0.0212
IBI:GNDVI y = 0.1362x − 0.2365
IBI:NDMI y = 0.1896x − 0.3376
IBI:NDRE y = 0.1704x − 0.0388
IBI:NDVI y = 0.1858x − 0.1109
IBI:NRERI y = 0.0634x − 0.0435

The IBI vegetation index (Table 6) reached similar values of relation to the vegetation
indices obtained by the satellite image analysis. The strongest correlation was again
recorded in 2020, when the value of r exceeded the limit of 0.8 for all vegetation indices
and, conversely, the lowest value of r was recorded in 2017.

Selected correlations between the individual vegetation indices were analyzed. Table 7
shows a summary of regression equations, and Figures 5 and 6 show the r values in the
respective years. Correlations are displayed between the vegetation indices (vs. IRMI/IBI)
whose r value was equal to or greater than 0.6 after the regression analysis. The graphs
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(Figures 6 and 7) confirm the positive linear relationship between the vegetation indices
of the ISARIA system and the indices (EVI, GNDVI, NDMI, NDRE, NDVI and NRERI)
obtained by the spectral analysis of satellite images from Sentinel-2. From the overlap of
r values in the individual years (2017–2020) and from the values of regression equations
(Table 7), it is clear that there was a shift in the linear dependence, which indicates a
potential annual effect (effect of total precipitation amounts and average temperatures
in the respective years) on the monitored vegetation indices. The annual influence of
meteorological conditions is also evident from the average grain yield from the individual
plots (Table 4) and from the development of meteorological parameters in the individual
years (supplementary, Figure S1).

Furthermore, examples of plots for each year are presented in Figure 8, the IRMI–
ISARIA (left), and the NDRE–Sentinel-2 (middle) vegetation indices and a map of the
relative comparison of both indices (right). The relative comparison maps show a compari-
son of two vegetation indices, and thus a comparison of mapping technologies. The maps
were obtained by converting both indices to relative values. The calculation was carried out
by using an average value of the particular index of the given plot and by subtracting the
NDRE values from the IRMI index. The resulting maps are divided into five categories. The
middle (gray) category shows the places on the map where both indices almost coincided
within ± 5%. The yellow category shows the difference ranges from −10% to (−5)%, and
the light green category is the difference range from 5% to 10%. Positive values (blue)
indicate a category of difference higher than 10%, where a higher relative value of the IRMI
index prevailed compared to the relative value of the NDRE index. Conversely, negative
values (red) show a category of values lower than −10%, where higher relative values of
the NDRE index prevailed as compared to relative values of the IRMI index.
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Figure 7. Spearman’s rank correlation coefficient and scatter graph showing the correlation between
the IBI vegetation index and vegetation indexes EVI, GNDVI, NDRE and NDVI in the respective
years of the experiment.

The comparison of all plots (Table 8) between the individual years shows the highest
agreement of technologies in 2019, when 75% of all values represented the category of
±5% and almost 97% of all values were indicated in the category of ±10%. The lowest
values of conformity between the technologies were achieved in 2017, when 29% of values
represented the ±5% category and 55% represented the ± 10% category.

Table 8. Percentage of relative differences between IRMI and NDRE in the individual years 2017–2020.

Year Number of
Records (n)

Category ±
5% (n)

Category ±
10% (n)

Category ±
5% (%)

Category ±
10% (%)

2017 20,358 5933 11,165 29.14 54.84
2018 11,597 6923 10,746 59.70 92.66
2019 16,594 12,496 16,032 75.30 96.61
2020 19,655 11,609 17,401 59.06 88.53

On the maps of selected plots (Figure 8), we can see recurring trends over several
years. In the places of higher absolute values of vegetation indices (IRMI, NDRE), negative
relative values of the differences between the technologies are evident. It indicates that
the Sentinel-2 satellite detected higher absolute values compared to the ISARIA system.
In the places of lower absolute values of vegetation indices, the opposite effect is evident.
On sites with visible areas of positive relative values of the difference, the ISARIA system
detected higher absolute values than the Sentinel-2 satellite. In the case of Plot 1, these
trends are seen in 2017, 2018 and 2020. In 2019, almost all values of the relative difference
belong to the middle category ± 5%, which means that the results of both technologies
almost coincided. An example of the relative comparison of selected plots in the respective
years is included in the appendix (Appendix C, Figures A2–A4). In 2020, the bands in the
plots are caused by the introduction of a new technology of erosion strips in the cultivated
land of the company.
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4. Discussion

The measured values confirm that the vegetation indices of the ISARIA system (IBI
and IRMI) are positively correlated with the calculated vegetation indices EVI, GNDVI,
NDRE, NDVI, NDMI and NRERI. Therefore, it can be stated that both vegetation indices
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IBI and IRMI and all the above-mentioned vegetation indices captured the same trends
in the development of winter wheat vegetation. Similar results were obtained by Bausch
and Khosla [36], who compared three vegetation indices from multispectral images of the
commercial QuickBird satellite system to terrestrial optical measurements of the stand with
the aim of determining the nutritional status of maize. Gozdowski et al. [37] describe the
results of a similar study comparing a Landsat satellite survey with ground-based mea-
surements using an AgLeader OptRx sensor. The dependence between the two monitoring
systems was tighter on plots showing higher spatial variability, while the correlation was
low on homogeneous plots.

From the measured values, it is evident that the positive correlation between the
individual vegetation indices was influenced by a so-called annual influence, which can
be characterized as seasonal changes in meteorological conditions. These changes are
evident from the measured meteorological data (supplementary Materials—Figure S1),
when, e.g., in 2018, a rapid decrease in total precipitation was recorded from a long-term
(1981–2010) amount of 775 to 334 mm and to 477 mm in 2017. Development of plants was
affected by water availability in the soil environment as it is known to be one of the factors
influencing the development of the winter wheat plant [24,38]. Lack of water could have
caused even changes in the chlorophyll content of the plants. According to Nikolaeva
et al. [39], long-term drought stress reduces the water content in leaves. This results in
changes in the chlorophyll content of wheat plants. At the beginning of the drought
period, a slight increase in chlorophyll content was recorded, and then a decrease, but there
were no changes in the ratio of chlorophyll a/b. If we take into account the time interval
(8 days on average) between the imaging of the winter wheat stands by the ISARIA system
and the Sentinel-2 satellites, results of changes in the chlorophyll content could have been
affected by vegetation indices. In general, the chlorophyll content in the leaves (LCC) of
winter wheat plants is used as an indicator of nutritional status and photosynthesis [40].
LCC in wheat leaves affects the spectral reflectance of the stand. A higher value of LCC
content increases the reflectivity of NIR and decreases the reflectance of visible radiation.
This is reflected in the resulting values of vegetation indices [41]. Therefore, changes in the
LCC content due to drought could have affected the calculated vegetation indices. Another
important factor is the period in which the spectral analysis of the stand was made (by
using the ISARIA system or the Sentinel-2 satellites). In general, vegetation indices are
the highest in the period of plant growth. Their values decrease after flowering and in the
stage of ripening [42]. Fluctuations in total precipitation amounts in the experimental years
could have had a considerable influence on the growth and ripening processes. Vegetation
periods were shifted when the stands ripened earlier; this reduced the chlorophyll content
in the plants and affected, as a final consequence, the calculated values of vegetation
indices [43]. The spatial variability of plant status in the fields reflected differences in the
soil properties, field topography and crop management. This also includes the variable
application rates of P and K fertilizers applied on the studied fields (arable land) based
on earlier observations and analyses (of soil, plants, etc.). Identification of the separate
effects of these factors on the crop sensing records is very difficult; thus, only the spectral
differences of both sensing techniques were evaluated.

A similar variability, as in the case of vegetation indices, was found in average yields,
although the development of values (increase and decrease) did not reflect the values of
vegetation indices. While in 2018, a significant decrease in the yield of winter wheat grain
was detected, a significant increase in the vegetation indices was detected, as well as in the
following years. These values can be explained mainly by the date of imaging/monitoring
the stand, which was carried out in the period of production fertilization with N fertilizer.
Thus, at least two months before the harvest, other abiotic and biotic factors could have
had their impact on the yield. An example is the year 2020, which in terms of total rainfall
does not indicate a problem of drought, compared to 2018. However, the problem was in
the distribution of rainfall which was uneven, and precipitation was above average during
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the ripening and harvest of the monitored crops. This has led to the reduced bulk density
of winter wheat and thus to the lower total yield [38,44].

The choice of vegetation index and sensor type is a very common factor in differences
between remote and proximal sensing, as shown in a review study with the analysis of 66
scientific papers focused on monitoring maize [45]. After all, differences in the spectral
configuration in the form of the number of spectral bands and their wavelengths are also
manifested between the proximal sensors themselves [46]. In some cases, it is recommended
to use a combination of both methods in the form of full-area mapping by remote sensing
and ground measurement with a chlorophyll meter to detect N deficiency [47]. However,
investment costs vary for the two technologies, as the main satellite imagery is available
free of charge (or at a very low price) compared to the high purchasing price of crop
sensors [48].

A demonstrable advantage of proximal sensing is operability/use in the case of
increased cloudiness (Figure 9), which prevents a reliable use of remote sensing. Satellites
cannot monitor the stand through cloudiness. The early and mid-growing season is typical
for frequent cloudiness, which puts limits on the use of passive orbital sensing systems [49].
At the same time, proximal sensors can also be useful in case of the problematic evaluation
of images of land areas near the treetops or objects that can distort the monitored stand by
shading, e.g., trees. In areas with the frequent occurrence of clouds and in specific parts
of the growing season, proximal sensors may represent a suitable alternative to remote
sensing even beyond the monitoring of plant nutrition, e.g., even for the application of
herbicides [50].
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clouds in the observed scene (source: Google Earth Engine).

5. Conclusions

In this study, the optical measurements/assessments of vegetation by proximal and
remote sensing methods were evaluated and compared for the on-farm diagnosis of plant
nutritional status in site-specific crop management. The results of a four-year (2017–2020)
field experiment showed a positive linear correlation between the vegetation indices
obtained by the ISARIA proximal on-the-go sensing system (IRMI, IBI) and the indices
determined by the spectral analysis of satellite images from the Sentinel-2 satellite (EVI,
GNDVI, NDRE, NDVI, NDMI and NRERI). The dependence confirms that the compared
vegetation in-dices are able to provide similar information on the condition of winter wheat
during the growing season.
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Positive correlations were found between vegetation indices determined by the IS-
ARIA system and indices based on multispectral images from the Sentinel-2 satellites,
which were moderately strong to strong (r = 0.54–0.81). Therefore, it can be stated that
both technologies were able to capture a similar trend in the development of winter wheat
vegetation. Furthermore, the influence of climatic conditions on the vegetation indices
was analyzed between the individual years of the experiment. All vegetation indices
demonstrated a significant effect of decreased total precipitation amounts and increased
mean temperatures. The values of vegetation indices obtained by the analysis of spectral
images from the Sentinel-2 satellites oscillated the most. This annual influence caused
a change in the course of the linearization of the correlation. ISARIA vegetation indices
showed lower differences among the individual years compared to the other vegetation
indices (EVI, GNDVI, NDRE, NDVI, NDMI and NRERI). This effect was manifested by a
shift in the linear dependence.

The results confirmed the similar sensitivity of proximal and remote crop sensing, their
usability for the diagnosis of crop status, and their implementation for the variable applica-
tion of nitrogen fertilizers during the vegetation period. The main difference between the
two sensing methods, therefore, remains in their practical applicability. Sentinel-2 satellite
data are available free of charge (or for a low operating fee) and represent a significant
source of effective full-area vegetation mapping. However, a main disadvantage of satellite
remote sensing is the risk of cloud and occurrence of other atmospheric phenomena in
the scene, often with a higher frequency in the most important part of the growing season
(April–May in the central European region). Just in these conditions, the proximal on-the-
go sensors, such as ISARIA can be a suitable alternative for farm purposes despite their
higher purchasing price.
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Appendix A. Results of Descriptive Statistics

Table A1. Results of descriptive statistics—vegetation indexes for individual years (2017, 2018, 2019,
2020).

Variable Year N X MED MIN MAX VAR SD VC

IRMI 2017 20,358 22.851 22.550 10.667 30.383 3.670 1.916 8.384
IBI 2017 20,358 2.912 2.805 1.295 4.745 0.332 0.576 19.785
EVI 2017 20,358 0.351 0.351 0.137 0.655 0.006 0.080 22.835

GNDVI 2017 20,358 0.559 0.557 0.317 0.811 0.005 0.071 12.767
NDMI 2017 20,358 0.079 0.079 −0.165 0.378 0.006 0.080 102.016
NDRE 2017 20,358 0.345 0.341 0.075 0.635 0.007 0.085 24.709
NDVI 2017 20,358 0.537 0.536 0.223 0.884 0.011 0.107 19.907
NRERI 2017 20,358 0.091 0.089 −0.011 0.237 0.001 0.025 27.501
IRMI 2018 11,597 23.185 23.133 12.133 30.017 3.479 1.865 8.045

IBI 2018 11,597 2.897 2.870 1.070 4.375 0.201 0.448 15.481
EVI 2018 11,597 0.537 0.533 0.199 0.747 0.005 0.073 13.568

GNDVI 2018 11,597 0.699 0.696 0.408 0.851 0.003 0.057 8.088
NDMI 2018 11,597 0.295 0.286 0.004 0.534 0.005 0.074 25.071
NDRE 2018 11,597 0.548 0.542 0.214 0.755 0.005 0.071 12.860
NDVI 2018 11,597 0.732 0.729 0.329 0.911 0.005 0.073 9.988
NRERI 2018 11,597 0.187 0.182 0.060 0.315 0.001 0.038 20.237
IRMI 2019 16,594 23.864 24.017 18.350 28.517 1.982 1.408 5.899

IBI 2019 16,594 3.494 3.538 1.570 4.395 0.102 0.319 9.125
EVI 2019 16,594 0.635 0.640 0.432 0.745 0.002 0.043 6.702

GNDVI 2019 16,594 0.772 0.778 0.610 0.865 0.001 0.035 4.576
NDMI 2019 16,594 0.427 0.438 0.214 0.547 0.003 0.053 12.354
NDRE 2019 16,594 0.631 0.637 0.428 0.742 0.002 0.046 7.219
NDVI 2019 16,594 0.832 0.839 0.623 0.918 0.001 0.038 4.596
NRERI 2019 16,594 0.211 0.212 0.098 0.347 0.001 0.029 13.623
IRMI 2020 19,655 22.320 22.433 11.933 30.750 3.280 1.811 8.114

IBI 2020 19,655 3.007 3.095 1.385 4.830 0.293 0.542 18.008
EVI 2020 19,655 0.542 0.567 0.197 0.807 0.014 0.116 21.447

GNDVI 2020 19,655 0.633 0.653 0.343 0.802 0.007 0.081 12.858
NDMI 2020 19,655 0.238 0.263 −0.067 0.496 0.013 0.113 47.602
NDRE 2020 19,655 0.472 0.499 0.154 0.683 0.010 0.099 20.991
NDVI 2020 19,655 0.680 0.715 0.261 0.878 0.013 0.113 16.615
NRERI 2020 19,655 0.145 0.144 0.030 0.286 0.001 0.038 25.910

Legend: MED = median; X = average; VAR = variance; SD = standard deviation; VC = variance coefficient.
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Figure A1. Vegetation indices for the individual years (2017, 2018, 2019, 2020): Boxes show Quarter 1 (25%) and Quarter 3 
(75%), red squares show the median and black brackets show minimal and maximal values. 

  

Figure A1. Vegetation indices for the individual years (2017, 2018, 2019, 2020): Boxes show Quarter
1 (25%) and Quarter 3 (75%), red squares show the median and black brackets show minimal and
maximal values.
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Appendix B. Results of Regression Analysis

Table A2. Spearman’s rank correlation coefficient for the vegetation indexes IRMI within selected
individual experimental fields and year.

Year Exp. Field Land Area (ha) VC IBI EVI GNDVI NDMI NDRE NDVI NRERI

2017 2207_1 58.21 8.44 0.95 0.66 0.69 0.73 0.84 0.61 0.40
2019 2207_1 58.21 3.85 0.91 0.70 0.71 0.65 0.67 0.69 0.73
2020 2207_1 54.62 4.99 0.78 0.50 0.59 0.55 0.56 0.55 0.44
2017 3204_1 29.56 10.61 0.82 0.67 0.70 0.66 0.71 0.68 0.53
2019 3204_1 29.56 5.28 0.95 0.80 0.85 0.81 0.80 0.83 0.78
2020 3204_1 29.28 9.22 0.92 0.79 0.85 0.83 0.86 0.83 0.56
2017 4102_6 24.75 4.78 0.89 0.64 0.63 0.64 0.61 0.63 0.45
2019 4102_6 24.75 5.15 0.78 0.61 0.68 0.70 0.68 0.67 0.63
2020 4102_6 22.57 5.15 0.91 0.71 0.70 0.68 0.72 0.69 0.58
2017 4205_1 18.16 5.52 0.96 0.75 0.73 0.69 0.71 0.74 0.55
2019 4205_1 17.94 3.31 0.78 0.67 0.67 0.65 0.66 0.68 0.60
2020 4205_1 15.7 5.43 0.91 0.81 0.79 0.76 0.77 0.79 0.67
2017 7401_3 128.32 8.00 0.97 0.69 0.71 0.61 0.72 0.75 0.62
2019 7401_3 128.32 4.59 0.87 0.38 0.47 0.30 0.54 0.43 0.52
2020 7401_3 114.86 5.07 0.91 0.73 0.73 0.73 0.74 0.69 0.72
2017 0206_1 8.97 5.59 0.84 0.64 0.68 0.70 0.73 0.68 0.64
2018 0206_1 8.97 4.20 0.96 0.49 0.55 0.62 0.64 0.50 0.63
2020 0206_1 9.22 4.66 0.92 0.33 0.40 0.39 0.34 0.43 0.48
2017 1002_1 7.46 3.39 0.94 0.63 0.56 0.62 0.66 0.58 0.46
2018 1002_1 7.96 4.17 0.97 0.56 0.44 0.50 0.50 0.47 0.47
2020 1002_1 7.97 4.36 0.91 0.60 0.57 0.57 0.55 0.59 0.48
2017 1102_1 44.7 4.68 0.93 0.73 0.71 0.71 0.73 0.72 0.65
2018 1102_1 37.3 5.03 0.96 0.65 0.65 0.70 0.72 0.64 0.65
2020 1102_1 42.63 4.57 0.84 0.52 0.48 0.50 0.48 0.45 0.51
2017 1103_7 11.13 3.92 0.85 0.62 0.60 0.52 0.54 0.59 0.52
2018 1103_7 11.13 3.95 0.97 0.63 0.73 0.79 0.79 0.72 0.80
2020 1103_7 11.13 9.31 0.95 0.72 0.77 0.78 0.79 0.77 0.69
2017 1203_1 29.81 5.83 0.95 0.74 0.74 0.69 0.75 0.76 0.63
2018 1203_1 29.81 4.54 0.93 0.65 0.62 0.67 0.65 0.61 0.60
2020 1203_1 27.88 3.96 0.92 0.61 0.65 0.60 0.62 0.65 0.55
2017 3003_12 45.12 8.01 0.99 0.91 0.91 0.92 0.93 0.93 0.83
2018 3003_12 45.12 9.46 0.98 0.88 0.86 0.88 0.88 0.86 0.87
2020 3003_12 40.16 6.62 0.95 0.71 0.73 0.75 0.76 0.72 0.75
2017 3202_1 46.11 6.60 0.98 0.79 0.76 0.79 0.77 0.77 0.59
2018 3202_1 46.11 4.90 0.91 0.42 0.47 0.50 0.52 0.43 0.36
2020 3202_1 38.11 3.83 0.81 0.44 0.48 0.44 0.53 0.48 0.48
2017 4201_7 16.89 4.75 0.98 0.84 0.80 0.82 0.80 0.81 0.58
2018 4201_7 16.89 4.16 0.84 0.40 0.37 0.45 0.43 0.31 0.38
2020 4201_7 16.89 3.44 0.82 0.51 0.49 0.58 0.63 0.42 0.57
2017 3203 7.71 5.58 0.98 0.70 0.63 0.68 0.61 0.63 0.52
2018 3203 7.71 4.57 0.91 0.64 0.69 0.69 0.72 0.70 0.60
2020 3203 7.71 4.10 0.89 0.50 0.50 0.50 0.51 0.48 0.48

Legend: VC = variance coefficient. Significant values are indicated by red marks.
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Table A3. Spearman’s rank correlation coefficient for the IBI vegetation indices in the selected
individual experimental fields and year.

Year Exp. Field Land Area (ha) VC IRMI EVI GNDVI NDMI NDRE NDVI NRERI

2017 2207_1 58.21 18.14 0.95 0.72 0.75 0.78 0.88 0.68 0.45
2019 2207_1 58.21 5.79 0.91 0.65 0.73 0.66 0.67 0.74 0.70
2020 2207_1 54.62 11.06 0.78 0.70 0.82 0.79 0.79 0.82 0.59
2017 3204_1 29.56 16.76 0.82 0.73 0.72 0.72 0.70 0.74 0.55
2019 3204_1 29.56 8.47 0.95 0.84 0.87 0.83 0.82 0.86 0.80
2020 3204_1 29.28 15.04 0.92 0.84 0.86 0.84 0.84 0.87 0.58
2017 4102_6 24.75 12.21 0.89 0.78 0.77 0.77 0.71 0.78 0.59
2019 4102_6 24.75 10.25 0.78 0.74 0.76 0.76 0.71 0.77 0.71
2020 4102_6 22.57 9.65 0.91 0.72 0.75 0.73 0.76 0.77 0.56
2017 4205_1 18.16 14.60 0.96 0.80 0.77 0.76 0.76 0.79 0.53
2019 4205_1 17.94 8.20 0.78 0.61 0.80 0.80 0.77 0.79 0.71
2020 4205_1 15.7 12.99 0.91 0.87 0.87 0.87 0.81 0.88 0.68
2017 7401_3 128.32 18.38 0.97 0.75 0.77 0.67 0.77 0.81 0.65
2019 7401_3 128.32 6.30 0.87 0.46 0.53 0.39 0.59 0.51 0.56
2020 7401_3 114.86 8.71 0.91 0.73 0.74 0.73 0.75 0.72 0.72
2017 0206_1 8.97 11.50 0.84 0.64 0.75 0.70 0.73 0.76 0.67
2018 0206_1 8.97 7.09 0.96 0.43 0.48 0.54 0.56 0.46 0.57
2020 0206_1 9.22 7.20 0.92 0.33 0.45 0.41 0.36 0.50 0.46
2017 1002_1 7.46 8.52 0.94 0.68 0.64 0.69 0.72 0.67 0.50
2018 1002_1 7.96 8.48 0.97 0.58 0.45 0.50 0.51 0.48 0.48
2020 1002_1 7.97 11.88 0.91 0.73 0.73 0.75 0.74 0.75 0.59
2017 1102_1 44.7 11.09 0.93 0.81 0.80 0.80 0.80 0.81 0.70
2018 1102_1 37.3 9.28 0.96 0.64 0.64 0.69 0.71 0.65 0.62
2020 1102_1 42.63 10.31 0.84 0.73 0.72 0.73 0.71 0.70 0.67
2017 1103_7 11.13 8.21 0.85 0.66 0.60 0.57 0.52 0.66 0.42
2018 1103_7 11.13 6.63 0.97 0.65 0.69 0.75 0.74 0.68 0.77
2020 1103_7 11.13 18.49 0.95 0.79 0.79 0.82 0.81 0.81 0.72
2017 1203_1 29.81 15.21 0.95 0.79 0.76 0.72 0.76 0.80 0.64
2018 1203_1 29.81 9.19 0.93 0.62 0.61 0.65 0.66 0.62 0.56
2020 1203_1 27.88 9.30 0.92 0.67 0.74 0.65 0.67 0.74 0.60
2017 3003_12 45.12 16.95 0.99 0.89 0.90 0.90 0.91 0.91 0.81
2018 3003_12 45.12 18.79 0.98 0.88 0.87 0.89 0.89 0.88 0.86
2020 3003_12 40.16 9.86 0.95 0.75 0.74 0.77 0.75 0.74 0.76
2017 3202_1 46.11 18.52 0.98 0.78 0.77 0.79 0.77 0.78 0.59
2018 3202_1 46.11 9.94 0.91 0.34 0.41 0.43 0.45 0.40 0.28
2020 3202_1 38.11 6.77 0.81 0.57 0.63 0.60 0.62 0.65 0.52
2017 4201_7 16.89 12.12 0.98 0.85 0.81 0.82 0.80 0.83 0.57
2018 4201_7 16.89 8.60 0.84 0.21 0.23 0.28 0.29 0.23 0.23
2020 4201_7 16.89 5.39 0.82 0.51 0.61 0.54 0.58 0.60 0.56
2017 3203 7.71 13.30 0.98 0.74 0.66 0.71 0.63 0.67 0.55
2018 3203 7.71 10.39 0.91 0.56 0.61 0.62 0.65 0.63 0.52
2020 3203 7.71 6.67 0.89 0.62 0.64 0.64 0.57 0.63 0.55

Legend: VC = variance coefficient. Significant values are indicated by red marks.
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Appendix C. Comparison of Selected Plots in Years
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Figure A2. Example of the comparison of proximal and remote sensing on experimental field ID
2207_1 in the selected years: vegetation index ISARIA IRMI (left); vegetation index Sentinel-2
(middle); relative (%) comparison of differences between the two sensing systems (right).
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Figure A3. Example of the comparison of proximal and remote sensing on experimental field ID
3003_12 in the selected years: vegetation index ISARIA IRMI (left); vegetation index Sentinel-2
(middle); relative (%) comparison of differences between the two sensing systems (right).
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Figure A4. Example of the comparison of proximal and remote sensing on experimental field ID
3202_1 in the selected years: vegetation index ISARIA IRMI (left); vegetation index Sentinel-2
(middle); relative (%) comparison of differences between the two sensing systems (right).
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