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Homology modeling is a method for building protein 3D structures using protein primary sequence and
utilizing prior knowledge gained from structural similarities with other proteins. The homology modeling
process is done in sequential steps where sequence/structure alignment is optimized, then a backbone is
built and later, side-chains are added. Once the low-homology loops are modeled, the whole 3D structure
is optimized and validated. In the past three decades, a few collective and collaborative initiatives
allowed for continuous progress in both homology and ab initio modeling. Critical Assessment of protein
Structure Prediction (CASP) is a worldwide community experiment that has historically recorded the pro-
gress in this field. Folding@Home and Rosetta@Home are examples of crowd-sourcing initiatives where
the community is sharing computational resources, whereas RosettaCommons is an example of an initia-
tive where a community is sharing a codebase for the development of computational algorithms. Foldit is
another initiative where participants compete with each other in a protein folding video game to predict
3D structure. In the past few years, contact maps deep machine learning was introduced to the 3D struc-
ture prediction process, adding more information and increasing the accuracy of models significantly. In
this review, we will take the reader in a journey of exploration from the beginnings to the most recent
turnabouts, which have revolutionized the field of homology modeling. Moreover, we discuss the new
trends emerging in this rapidly growing field.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

The protein folding problem has become an integral part of
modern biology; with a historical tale that began nearly over half
a century ago. Proteins are diverse heterogeneous polymers com-
prised of gene-coded primary sequences of amino acid monomers.
Pioneering work on identification of hydrogen bond-linked protein
secondary structures like a-helix by Linus Pauling and others in the
1950s paved the way to accurate experimental elucidation of ato-
mistic (i.e. with fully determined xyz-coordinates for each heavy
atom) protein 3D structures [1]. The use of X-ray crystallography,
followed by nuclear magnetic resonance (NMR) and later cryo-
electron microscopy (cryo-EM) has been dogmatic to the study of
protein 3D structures in recent decades. Nevertheless, the rapid
development in the field of genomics resulted in an unavoidable
gap between the number of protein sequences identified and the
number of experimentally validated protein 3D structures [2].
Computational methods offered a compromised solution to this
dilemma. They provided faster, easier, cost-effective, non-labor
intensive and practical results. The protein folding problem was
approached from a thermodynamic angle (applying quantum and
molecular mechanics), where the folding possibilities are scanned
in potential energy conformational space (c-space) in hopes to find
a state of a global minimum of energy. The computational
approaches can be classified into two types of search algorithms:
(1) Heuristic algorithms scan all the possibilities in c-space with-
out a priori knowledge (e.g. ab initio modeling, Monte Carlo and
molecular dynamics simulations). (2) Deterministic algorithms
exclude a number of sub-spaces from c-space by utilizing a priori
knowledge (e.g. homology modeling where all conformations far
from the template are eliminated) [3]. In the case of homology
modeling, the a priori knowledge is an experimental crystal struc-
ture of a template protein that is homolog to the target. In other
words, a known similar protein is used to build a new atomistic
3D structure.

Nearly 25 years ago, a large-scale experiment was performed
for the first time to evaluate the rapid developments in protein
folding prediction algorithms [4]. Until then, it was previously
unknown how well protein 3D structure prediction algorithms
can deliver. It was also unknown how seriously the ~35
participants and the rest of scientific community will take this
Fig. 1. Historical timeline of major developments in homology modeling, taking into c
Critical Assessment of protein Structure Prediction. GPU: Graphics Processing Unit. TPU
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experiment. Since then, the Critical Assessment of protein Struc-
ture Prediction or CASP has become a biennial event and a very
well-documented record of the progress in the fields of homology
modeling (TBM category or template-based modeling), ab initio
modeling (FM category or free modeling), fold recognition and
others. It was unavoidable that this experiment will shift from
individual to collective intelligence (CI). Teams started to share
their experiences and sooner or later what used to be biennial
top-secret projects quickly became a catalyst for collaboration
and development in all teams over the years. CASP and other CI ini-
tiatives will be discussed briefly in this review, covering the his-
toric aspects of homology modeling and the lessons learned in
recent years (Fig. 1). The homology modeling process is done in
sequential steps where sequence/structure alignment is optimized,
then a backbone is built, and later, side-chains are added. Further-
more, low-homology loops are modeled followed by optimization
and validation of the whole structure.

In the past few years, the field of homology modeling was
invaded and revolutionized by machine learning (ML). ML is a sub-
field of computer science that gives computers the ability to learn
without being explicitly programmed. According to recent defini-
tions, it is an umbrella term that refers to a broad range of algo-
rithms that perform intelligent predictions based on a dataset
[5,6]. ML is a branch of artificial intelligence (AI) (not to be con-
fused with data mining). AI is the capability of a machine to imitate
intelligent human behavior using reason, devising strategy, solving
puzzles, and making judgments under uncertainty, representing
knowledge including common-sense knowledge, planning, learn-
ing, communicating in natural language and integrating all these
skills towards common goals [7,8]. On the other hand, the defini-
tion of data mining is to mine information and discover knowledge
without explicit assumptions, that is, without prior research and
design, the information obtained should have three characteristics:
previously unknown, effective, and practical [9]. ML was recently
introduced to homology modeling showing unprecedented
improvements in prediction accuracy. In brief, ML includes a wide
range of algorithms used for extracting certain features from data
in order to perform predictions on new data. In other words, the
dataset is used to estimate unknown dependencies of a system in
order to predict new outputs of that system [10]. The process is
done by (1) collecting and describing data, (2) building mathemat-
onsideration the developments in collective and artificial intelligence fields. CASP:
: Tensor Processing Unit.
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ical/statistical model, and (3) evaluating the model performance.
The protein 3D structure dataset should be in high quality and well
formatted for ML computations [11]. The model building and eval-
uation is often performed by dividing the data into training and
testing sets for ML algorithms. These algorithms include logistic
regression, decision trees, support vector machines, random for-
ests, artificial neural networks, and many other methods [12].
From now on, we will refer to artificial (non-biological) neural net-
works as neural networks in the rest of the review.
2. Homology modeling

In one seminal review, Marti-Renom et al. (2000) [13] envi-
sioned the necessity for large-scale genome-wide automated
homology modeling (which used to be called comparative model-
ing) in order to face the torrents of new genomic sequences. The
same challenges of that time, namely: ‘‘weak sequence–structure
similarities, aligning sequences with structures, modeling of rigid
body shifts, distortions, loops and side chains, as well as detecting
errors in a model.” are still recognized till this day. Homology mod-
eling depends on two principles: first, the primary sequence of
amino acids determines the protein 3D structure, and second, the
protein 3D structure is somehow conserved with regards to the pri-
mary sequence. Although that seems like an easy and direct task,
nevertheless it is not; in fact, protein folding and 3D structure for-
mation rules are not black and white. However, using homology
modeling can fill the gap between primary and 3D structures,
which will permit us to deduce functional and useful properties
in the sameway an experimental 3D structure can be applied. Thus,
giving us access to more therapeutic targets and many other appli-
cations such as the study of protein function (e.g. catalytic enzymes
and their substrates), the structural roles of proteins in the cell
(some proteins serve as building blocks in the cell), and protein
interactions (such as antibody binding) [2,14–16]. Structural geno-
mics is a broad and ambitious concept that was introduced nearly
two decades ago, in which scientists hope to one day be able to
determine 3D structures of all proteins encoded in the genome.
Such technological advancement can answer numerous questions
about cellular functions, tissue specialization, signaling pathways,
and disease mechanisms. Furthermore, disease-related mutagene-
sis studies are another avail of homology modeling in the aspect
of identification of amino acids with relevant function in a protein.
Homologymodeling tools are also applied inmolecular modeling of
Fig. 2. The seven classical steps of homology modeling. Donut shapes descri
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biological assemblies of protein complexes (e.g. entire virus 3D
structure), and in protein–protein interaction studies [15,17–19].
One of the most recent applications of homology modeling is the
refinement of cryo-EM 3D structures, in which computational
methods are used to analyze 3D molecular surface and density
maps, followed by homology modeling used to generate atomic
3D model [20–23]. Recently, Single-particle cryo-EM has acquired
atomic resolution, which not only enables the visualization of
atoms in a protein, but also observation of density for hydrogen
atoms and imaging of single-atom chemical modifications [24].

The process of homology modeling itself is run by seven classi-
cal steps (Fig. 2):

1. Identification and selection of templates (other homologous
proteins with known 3D structures). Depending on the first
principle, we start searching for eligible templates based on
sequence–sequence alignment, while narrowing our search to
the crystal structures deposited at the Worldwide Protein Data
Bank (wwPDB) database (http://www.wwpdb.org/). The eligible
templates are chosen using protein Basic Local Alignment
Search Tool (BLASTp). In the case of low homology (below
35% sequence identity; the number of identical amino acids in
an alignment), alternative methods are used for alignment to
reduce shifts and gaps such as profile-profile alignments, Hid-
den Markov Models (HMMs) and position-specific iterated
BLAST (psi-BLAST). Profile HMMs generate more accurate align-
ments than psi-BLAST, such as HMM-HMM–based lightning-
fast iterative sequence search (HHblits; http://toolkit.genzen-
trum.lmu.de/hhblits/) [25], and iterative profile-HMM search
method, JackHMMER [26]. Very low sequence identity will lead
to false folding assignments due to alignment errors resulting
from more gaps and mutations [2,16,27–29]. Multiple align-
ments (e.g. CLUSTALW [30], Clustal Omega [31], and MUSCLE
[32]) and using multiple templates can improve the modeling
process.

2. the previous step is followed by correction and optimization of
the chosen alignments (usually with multiple template 3D
structures) in order to build the whole backbone [29,33].

3. The 3-D model building is then performed using one of four dif-
ferent approaches [2,34]:
i. The rigid-body assembly method collects rigid body parts

together, which are picked up from the aligned template
protein structures, using programs like 3D-JIGSAW,
BUILDER, and SWISS-MODEL.
be the major events influencing some of the homology modeling steps.

http://www.wwpdb.org/
http://toolkit.genzentrum.lmu.de/hhblits/
http://toolkit.genzentrum.lmu.de/hhblits/


Table 1
Scores used in protein 3D structure comparison and evaluation. Distance-based and
contact-based similarity scores are used in experimental evaluation of homology
models. Other scores are used for quality check such as physics-based, knowledge-
based and combined scores.

Score Description Reference

Distance-based similarity scores:
RMSD Root mean square deviations
wRMSD weighted RMSD
RMS of

dihedral
angles

Root mean square of dihedral angles [42]

GDT Global distance test employing local global
alignment (LGA) program

[43]

GDT_TS GDT total score: Iterations superposing sets of
3, 5 and 7 consecutive Ca atoms (thresholds 1,
2, 4, and 8 Å)

[44]

GDT_TL/
GDT_HA

GDT high accuracy scores: Finer thresholds
than GDT_TS (0.25, 0.5, 1, and 2 Å)

[14,44]

TM-score Variations between Ca atoms weighting
residues at shorter distances

[45]

TM-align Based on TM-score for evaluating global
variations

[45]

MaxSub Normalized score from large subset of Ca
atoms

[46]

SphereGrinder Specialized for large predicted models [47]
Contact-based similarity scores:
CAD Contact area difference [48]
CAD-score Contact area difference [49]
Physics-based quality scores:
Molprobity

score
Global (whole protein) and local (small
regions) perspectives

[50]

What IF Surface area, solvent accessibility, and
hydrophobicity checks

[51]

PROCHECK PROgram to CHECK stereochemical quality [52]
Knowledge-based quality scores:
QMEAN Qualitative Model Energy ANalysis [53]
DOPE Discrete Optimized Protein Energy [54]
PROSAII PROtein Structure Analysis II [55]
Combined quality scores:
MetaMQAP Meta-methods for quality assessment of

protein models
[56]

Machine
learning
methods

Using support vector machine (SVM) to
combine scores

[57]

Z-score Any arbitrary score function based on sum of a
number of scores (e.g. force field energies,
GDT, etc.)
May or may not be normalized

Other methods:
Experimental

studies
Validation can be done by other experimental
data, such as molecular dynamics simulations,
spectroscopic methods, binding analysis (e.g.
calculations of dissociation/inhibition or Kd/Ki
constants)

[58,59]
Table 2
Molecular graphics programs.

Program URL Reference

Avogadro http://avogadro.cc/ [60]
DeepView (SwissPDB

Viewer)
https://spdbv.vital-it.ch/ [61]

EzMol http://www.sbg.bio.ic.ac.uk/
ezmol/

[62]

Jmol http://jmol.sourceforge.net/ [63]
MOE (Molecular Operating

Environment)
https://www.chemcomp.com/ [64]

Molden https://www3.cmbi.umcn.
nl/molden/

[65]

PyMOL https://pymol.org/2/ [66]
RasMol http://www.rasmol.org/ [67]
SAMSON https://www.samson-connect.

net/
[68]

Scigress https://www.fqs.pl/en/chemistry/
products/scigress

[69]

UCSF Chimera https://www.rbvi.ucsf.edu/
chimera/

[70]

VMD (Visual Molecular
Dynamics)

http://www.ks.uiuc.edu/
Research/vmd/

[71]

WHAT IF https://swift.cmbi.umcn.nl/
whatif/

[72]

YASARA http://www.yasara.org/ [73]
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ii. The segmented matching method relies on comparing the
template and structures in the database, based on the
sequence identity, geometry, and energy such as the Seg-
Mod/ENCAD program.

iii. The spatial restraint method approach is another method
that depends on the restrains of the template, and can be
done using MODELLER.

iv. The artificial evolution method depends on rigid-body
assembly and stepwise template evolutionary mutations,
and can be done using NEST.

4. The next step is loop modeling. Loops sometimes contribute to
important protein functions where the accuracy of loop predic-
tion is crucial to the model whole value. Loop prediction is a
complex process because loops are variable and not conserved.
Loop prediction is done by two methods: the first is database
search approaches which depend on comparison with all the
3497
known proteins, the second is conformational search approach
(ab initio) which depends on scoring function optimization; a
more direct approach [29,35].

5. The addition of side-chains onto the major backbone is very
critical step. This process requires selection of a rotamer library,
a scoring function and a scanning method [36]. Several pro-
grams have been developed to add the side-chain rotamers,
such as: OPUS-Rota2 [37], SCWRL [38], and FASPR [39] to name
a few tools. We need to emphasize that most homology model-
ing servers and programs perform the previous steps (from
input sequence to building 3D structure) in automated fashion,
however many of the tools previously described can be used
independently to fix errors in the model.

6. The previous step is followed by model optimization, which is
used for increasing the quality of the final model. This step is
done by using energy minimization utilizing molecular
mechanics force fields, to reduce atomic clashes, and exclude
all major and small errors. Further optimization can be done
using molecular dynamics and Monte Carlo simulations [40].

7. The final step is model evaluation and validation (Table 1),
where the value and function of the model are correlated with
the model accuracy. For this purpose Distance-matrix ALIgn-
ment (DALI, http://ekhidna2.biocenter.helsinki.fi/dali/) or Veri-
fy3D (https://servicesn.mbi.ucla.edu/Verify3D/) can be
employed. The value of the model is decided depending on
the stereochemistry, physical parameters, knowledge-based
parameters, statistical mechanics, and many other criteria.
The ultimate model validation would be assessment against
real experimental 3D structure. It is advised to use several eval-
uation methods simultaneously to yield the best results. One of
the challenges in modeling is the reduced accuracy or produc-
tion of incorrect models. Alignment errors are still the main
cause of deviations and the previous challenges need careful
manual inspection and adjustment even when using fully auto-
mated programs [16,17,41].

3. Homology modeling programs

Various molecular graphics programs are used for visualization
and editing of protein 3D structures (Table 2). The number of fully
automated homology modeling programs has been growing.

http://ekhidna2.biocenter.helsinki.fi/dali/
https://servicesn.mbi.ucla.edu/Verify3D/
http://avogadro.cc/
https://spdbv.vital-it.ch/
http://www.sbg.bio.ic.ac.uk/ezmol/
http://www.sbg.bio.ic.ac.uk/ezmol/
http://jmol.sourceforge.net/
https://www.chemcomp.com/
https://www3.cmbi.umcn.nl/molden/
https://www3.cmbi.umcn.nl/molden/
https://pymol.org/2/
http://www.rasmol.org/
https://www.samson-connect.net/
https://www.samson-connect.net/
https://www.fqs.pl/en/chemistry/products/scigress
https://www.fqs.pl/en/chemistry/products/scigress
https://www.rbvi.ucsf.edu/chimera/
https://www.rbvi.ucsf.edu/chimera/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
https://swift.cmbi.umcn.nl/whatif/
https://swift.cmbi.umcn.nl/whatif/
http://www.yasara.org/
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However, for the past three decades, few programs have been ever
increasing in popularity at a steady pace (Fig. 3).

MODELLER [74,75] is a program inspired by similar techniques
used in NMR structure determination called modeling by satisfac-
tion of spatial restraints. Using probability density functions, these
restraints/parameters are combined in one objective function that
is minimized by conjugate gradient and molecular dynamics with
simulated annealing. These restraints include: homology-derived
restraints on the distances and torsional angles in the query
sequence/template structures alignment; stereochemical
restraints such as bond length and bond angle parameters obtained
from a force field; parameters for torsional angles and non-bonded
interatomic distances; and finally optional restraints, such as those
from experimental data.

SWISS-MODEL [76–79] is an automated server with minimal
user input, usually in the form of primary sequence. Templates
are selected and aligned from an extracted database (exPDB), and
models are built for all regions except insertions and deletions in
the target-template alignment. The gaps are built using constraint
space programming to select the best loop. A backbone-dependent
rotamer library is used to add the side-chains and the model is
optimized by steepest descent.

I-TASSER [80,81] is an iterative threading assembly refinement
server used to generate homology models from multiple threading
alignments and iterative structural assembly simulations. The tar-
get sequence is matched against a non-redundant sequence data-
base by psi-BLAST tool to identify homologs. A sequence profile
is also used to predict the secondary structure. It is then threaded
through a representative 3D structure library using LOMETS tool to
rank the templates for further consideration. The threads are
assembled and the loops are predicted by ab initio methods. Mod-
els are generated using a modified replica-exchange Monte Carlo
simulation and the top cluster is selected using SPICKER tool, and
the model is finally optimized and evaluated.

Phyre [82] and the updated Phyre2 [83] are servers that use
advanced remote homology detection methods to build 3Dmodels,
predict ligand binding sites and analyze the effect of amino acid
mutations. Psi-BLAST and secondary structure prediction algo-
rithms are used to align the target sequence on template 3D struc-
ture. The scan of 20% identity non-redundant database is curated
using HHblits to create multiple sequence alignments, which are
later used to predict secondary structure with PSIPRED. Both the
alignment and secondary structure prediction are combined into
Fig. 3. Yearly citations of widely used homology modeling programs (defined as
those having > 1000 total citations). MODELLER (red) and SWISS-MODEL (blue),
which date over two decades are the most popular among researchers, whereas the
popularity of I-TASSER (orange) and Phyre2 (green) is on the rise (source:
webofknowledge.com). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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a query HMMs. The best alignments are used to build a model from
a database of known 3D structures HMMs. Finally, the loops are
modeled and side-chains are added accordingly.

Rosetta [84] is a program based on de novo structure prediction
algorithm, yet it is used for protein folding in divergent domains of
homology models. Initial protein folding of short segments is cho-
sen from the protein 3D structure database, whereas longer seg-
ments are constructed using 3 and 9-residue fragments selected
from the database and combined using the Rosetta algorithm.

RaptorX [85] is a server, which was developed by addition of
several enhancements on the previous RAPTOR program. First,
the quality of sequence profiles is assessed by a profile-entropy
scoring method that considers the available non-redundant homo-
logs. Second, conditional random fields are used to integrate a vari-
ety of biological signals in a nonlinear threading score function.
Multiple-template threading tool allows for the use of multiple
templates to model a single target sequence, which can correct
some errors in pairwise alignments.

GALAXY, GalaxyTBM [86] or GalaxyWeb [87] is a server which
employs HHsearch and PROMALS3D tools for template selection
and sequence alignment. The core regions are retained while the
unaligned regions are removed and later added in refinement using
ab initio loop modeling. The model is globally optimized by confor-
mational space annealing in which a maximum of three unreliable
local regions are reconstructed.

AlphaFold [88], which is developed by DeepMind company,
relies more on ab initio modeling principles. Here, co-
evolutionary analysis is used for matching amino acid sequence
co-variation with physical contact in protein 3D structure, and
later, these maps are studied using deep neural networks to iden-
tify patterns in protein sequence and co-evolutionary couplings
and convert them into contact maps. The approach can be consid-
ered a modification on RaptorX modeling. RaptorX uses multiple
sequence alignments to predict probabilities of discrete distances
(mean and variance) to limit the atom–atom distances in predicted
ranges that are used to feed geometric constraint satisfaction algo-
rithm. Unlike RaptorX, AlphaFold exploits the entire probability
distribution in a continuous function, which is later minimized.
4. Independent evaluation experiments

Due to growing number of programs and tools used in homol-
ogy modeling, several research groups attempted to benchmark
and evaluate the homology modeling programs independently. In
a benchmarking experiment, Wallner and Elofsson [89] evaluated
six homology modeling programs, namely: MODELLER, SegMod/
ENCAD, SWISS-MODEL, 3D-JIGSAW, NEST, and Builder. Among
these, MODELLER, NEST, and SegMod/ ENCAD were the best per-
formers. Similarly, Dalton and Jackson [90] evaluated five homol-
ogy modeling programs (Builder, NEST, MODELLER, SegMod/
ENCAD and SWISS-MODEL) using three alternative sequence-
structure alignment programs (3D-Coffee, Staccato and SAlign).
Their findings showed MODELLER to be the best performer among
these. Forrest et al. [91] used MODELLER to evaluate the accuracy
of numerous types of alignments in predictions of homology mod-
els of membrane proteins, such as sequence-to-sequence align-
ments (e.g. ClustalW), sequence-to-profile alignments (e.g. Psi-
BLAST of each template then align queries with ClustalW),
Multiple-sequence alignments (e.g. Psi-BLAST followed by Clus-
talW, T-Coffee, MUSCLE and ProbCons), profile-to-profile align-
ments (e.g. HMAP) and structure-based alignments (via SKA). For
identities>30%, their findings showed that profile-to-profile align-
ments produced the best homology models. Despite their thor-
oughness and comprehensiveness, the field of homology
modeling is rapidly growing beyond a single evaluation experi-
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ment. Experimental 3D structure repositories are growing, while
homology modeling programs and servers are updated
continuously.
5. Collective intelligence

The Wikipedia defines CI as ‘‘shared or group intelligence that
emerges from the collaboration, collective efforts, and competition
of many individuals and appears in consensus decision making”
[127]. In their attempt of formulating the first mathematical CI def-
inition, Szuba et al. [92] identified CI as distinguished concept from
individual and artificial intelligences, thus generalizing the mathe-
matical definition to be applied on bacteria, other organisms, and
even inter-species groups. Such formalism accepts collective
resources and software programs as entities communicating (in-
teracting) within the collective. Again in their generalized mathe-
matical formalism, Szuba et al. [92] argued that ‘‘in a socially
cooperating structure, it is difficult to differentiate thinking and
non-thinking beings (abstract beings must be introduced)”. Never-
theless, more community-oriented intelligence concepts were
trending in the past few decades. Wisdom of the Crowd is a con-
cept, which attributes the best judgments to the ones made by a
group of people as compared to the ones made by the best person
in the group. The value of this phenomenon lies in being able to sift
the noise out in individual judgments in order to get closer to the
ground truth using the clear voice of the group. This concept can be
applied on the synergism of the scientific communities or research
groups [93]. In contrast, Crowd-Sourcing is a problem-solving
strategy, which involves an organization having a large group of
people attempting to solve a problem or part of a problem then
sharing the solutions. This strategy allows large groups of individ-
uals to practice wisdom of the crowd by participating in research
projects through innovation-challenges, hackathons, and related
activities, which can eventually achieve faster and more efficient
outcomes [94,95]. The ultimate level of merging CI and AI is called
Symbiotic intelligence (SI). From a biological aspect, symbiosis is a
beneficial relationship between two organisms living together,
however, in the aspect of bioinformatics definition, SI is the new
paradigm of co-operation between humans and computers to per-
form more advanced applications combining the much computa-
tional breadth of the human brain with the much computational
depth of the computer processers [96,97].
6. Collective intelligence and protein folding

Numerous developers of popular homology modeling pro-
grams/servers (e.g. MODELLER, SWISS-MODEL, I-TASSER, etc.)
established huge database repositories of homology-modeled 3D
structures and supplemented them with prediction algorithms
for annotation of secondary structures, protein domains and func-
tions. No one can deny the role of CASP in motivating the scientific
community for active development of the homology modeling
field, although more in some years than others as detailed in the
next section. CASP inadvertently contributed to the development
of homology model evaluation techniques. It is also clear that
developments in ab initio modeling (FM category in CASP) have
also inspired the development of homology modeling indirectly
through initial contact maps and directly through ab initio loop
modeling tools, which are integral part of many homology model-
ing programs. We have used the term ‘‘collective intelligence” to
describe the situation when a group of researchers is working,
dependently or independently, competitively or uncompetitively,
actively or passively, towards a unified goal. Here, we will describe
three other examples of CI that shaped our perception of the
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protein folding problem (not only in homology modeling), namely:
@home projects, RosettaCommons and Foldit.

@Home projects are distributed computing projects that moti-
vate volunteers by giving them certified Berkeley Open Infrastruc-
ture for Network Computing (BOINC) credits. There are nearly 40
BOINC projects at the moment. Folding@Home (https://foldingath-
ome.org/) is a distributed computing project that utilizes the vol-
unteers’ computational resources such as CPU power, disk space,
and network bandwidth. The project, which started in 2000, used
molecular simulations to study the folding and functions of many
proteins, in some cases for over 1.5 ms time scale, and published
nearly 225 articles. It is estimated that nearly 4 million personal
computers around the world are participating in this project and
competing to earn points. In their perspective entitled ‘‘Screen
Savers of the World Unite!”, Shirts and Pande [98] argued for the
utilization of unused CPU-time in a period where computational
costs for molecular simulations were extremely expensive. This
project describes a dependent, competitive and passive form of
CI. Rosetta@Home (https://boinc.bakerlab.org/rosetta/) is another
distributed computing project from David Baker’s lab that was
announced in 2005, and currently holds over 53,000 active volun-
teers from 150 countries. Predictor@home is an example of another
distributed computing project to predict 3D structures using dTAS-
SER. However, it was discontinued in 2009 [99]. The Human Pro-
teome Folding Project (HPF) [100] is another discontinued
distributed computing project on the World Community Grid
(WCG, developed by IBM company), which utilized Rosetta and
was active in the years 2004–2013.

RosettaCommons (founded in 2001) is an example of a collabo-
rative initiative of > 500 developers that began in the mid-1990 s,
where the scientific community is sharing a codebase for develop-
ment of computational algorithms [101]. Eventually, this library of
over 3.1 million lines of code have grown to become one of the lar-
gest programs in molecular modeling. RosettaCommons describes
a dependent, uncompetitive and active form of CI that was able
to avoid the fate of many old programs by establishing sustainable,
ever-growing and well-maintained CI.

Another unique initiative is the Foldit project (http://fold.it/),
also developed in 2008 by David Baker’s lab at the university of
Washington [102]. Foldit is a protein folding puzzle video game,
which can be viewed as a clear example for the role of competitive-
ness and crowd-sourcing in prediction of protein 3D structures.
Recent successes of Foldit project highlight the applications of this
video game in de novo protein design (viz. synthetic biology),
which were validated by the study of the designed structures using
NMR and cryo-EM [103,104].
7. Collective intelligence and the CASP experiments

The protein folding problem still remains one of the most
important questions in biology. What controls the speed of folding
and why does a protein choose a certain folding state? Further-
more, can we design a logical algorithm that predicts the 3D struc-
ture and its changing dynamics using amino acid sequence alone
[105]? With regards to the third point, Moult and colleagues initi-
ated an experimental event that is held every second summer.
CASP started in 1994 by sending invitations to the known research-
ers in the field and by advertisements in journals. Different teams
participated worldwide to predict different protein 3D structures
using their algorithms. The results of the different teams were then
compared with the true experimental structures in a ‘‘Blind” pre-
diction regime. The organizers provided all the teams with the
same protein sequence targets, with balanced range of difficulty,
in order to catch a panoramic view of the modeling problems of
that time [106–108]. The CASP experiment can be viewed as a

https://foldingathome.org/
https://foldingathome.org/
https://boinc.bakerlab.org/rosetta/
http://fold.it/


Fig. 4. Yearly citations of CASP13 highly-performing homology modeling programs.
I-TASSER and RaptorX are the most rising in popularity among researchers (source:
webofknowledge.com).
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unique scientific sociological structure; an approach to advance
protein science through organized, collaborative and communal
effort. The protein folding question was no longer a one individual
problem, but rather a complicated field which requires enormous
efforts to move one step ahead [105]. The age of the CASP is
26 years and still counting. In the first decade of the experiment,
prediction accuracy has improved positively from year to year with
steady yet modest progress from CASP1 to CASP6. This can be
explained by the expansion of the PDB database (Fig. 2) and the
emerging of new sequence search and alignment tools such as
BLAST. Further, the emerging of the fragment assembly method
after CASP4 gave the researchers the ability to treat each identifi-
able domain as a separate target; which also left a positive imprint
on the first decade’s results [109,110]. In CASP6, a new measure-
ment, also known as the global distance test GDT_TL parameter
(Table 1), was used along with the old less sensitive GDT_TS
parameter to show the slight accuracy improvement between
CASP5 and CASP6, in addition to improved server performance
[110]. CASP7 introduced two major changes: The first change
was in closing the accuracy gap between the human and auto-
mated server in terms of prediction; an important step towards
high throughput modeling. The second change was model choice
based on a single best template structure to predict the perfor-
mance. Overall, the progress from CASP6 to CASP7 has been sus-
tained in the mid-range difficulty targets. However, at that point
there were still challenges in the prediction of large complex mole-
cules, ab initio modeling and refinement techniques [111].

At the end of the second CASP decade, more difficult targets
were introduced, while the development of multiple template
methods and small single-domain ab initio structures modelling
have advanced. Two encouraging developments in CASP10 edition
were the development of new refinement methods and the
improved methods of predicting contact maps (defined by
residue-residue proximity based on threshold distance between
the Cb atoms of the side-chains) [112]. The CASP11 experiment
achieved few things that were expected from the last optimistic
edition: the improvements were in the new contact map methods
of the ab initio models, the refinement methods using molecular
dynamics for estimating the accuracy of models, and finally mod-
eling of non-principal templates regions [113].

CASP12 edition revealed acceleration in the progress of contact
accuracy using new methods for predicting residue-residue con-
tacts, as well as ab initiomodeling due to these developedmethods.
The newly available data for protein sequences and 3D structures
frommany resources contributed to these previous improvements.
The torrents of data have assisted modeling by combining experi-
mental and computational forces together. Many research teams
relied on refinement using molecular dynamics. This CASP and
the previous one established a new assessment to decide whether
a model is adequate for answering a particular biological question.
A new assessment category for protein assembly was also added
[114].

By far, the CASP13 had the most dramatic changes, starting with
the changes in target composition from ab initio and homology
models due to progress in resolution of cryo-EM. A striking devel-
opment was seen in backbone accuracy as a result of the effective
deployment of deep ML methods. The most surprising improve-
ment was spotted in ab initiomodeling, one of the toughest aspects
of the experiment, as a reflection of the progress in contact predic-
tion. Homology modeling displayed superior results from CASP12
due to the impact of deep ML methods and contact prediction.
Overall, the most two general features that made this total differ-
ence are the introduction of a new formulation of contact predic-
tion and new deep network architecture [115,116]. Amongst the
highest performers in CASP13, it is clear that I-TASSER and RaptorX
were already growing in popularity among researchers, while two
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highly sophisticated and accurate performers were emerging
rapidly, namely GALAXY and AlphaFold (Fig. 4 and Table 3).

8. Artificial intelligence and protein folding (From Machine
learning to deep Learning)

Since the mid-1990 s, different computational algorithms were
involved in protein secondary and tertiary structure prediction
such as genetic algorithms, graph theory, ML and neural networks
[128]. While many of the conventional ML methods can be substi-
tuted with other statistical methods, the main trigger to catalyze
the use of deep learning neural networks in homology modeling
was the dawn of ‘‘big data” era. The rising momentum in protein
sequence and structure data production came from both computa-
tional and experimental sources. Within ten years, the applications
of contact maps and the need to apply complete contact distance
distributions instead of discretized data were increasingly envi-
sioned to lead the way to more accurate 3D structure predictions.

Deep learning convolutional neural networks (CNN; Figure 5A)
in protein structure prediction were recently reviewed by Torrisi
et al. [129]. Two classes of protein structure annotations (PSA) pre-
dictions were used to identify the deep learning tools used, namely
1D and 2D features. 1D-PSA included models to predict secondary
structures, solvent accessibility, torsion angles, contact density and
disordered regions. 2D-PSA included models to predict distance
maps (e.g. AlphaFold), multi-class contact maps (e.g. DeepCDpred
[130] and RaptorX-Contact [131]) and contact maps (e.g. I-
TASSER’s TripletRes [132] and the rest of modeling tools). In
another recent review, Gao et al. [133] described four common
strategies of deep learning neural networks that can be applied
in protein 3D structure prediction:

1. CNN are widely used in image analysis and most widely used in
protein 3D structure prediction [129], e.g. RaptorX and Alpha-
Fold. They are based on convolutional kernels where the input
passes through convolutional layers. The inputs are convolved
(coiled or rolled) in a restricted region just like in a biological
system when cortical neurons respond to stimuli only in a
restricted region of the visual field (Figure 5A).

2. Recurrent neural networks (RNN; Figure 5B) are widely used in
sequence data such as text and time series, and they learn in a
sequential (i.e. autoregressive) way. Therefore, their best appli-
cation would be for protein sequence generation or prediction
of the next amino acid at the terminus of a protein.

3. Variational auto-encoder (VAE; Figure 5C) is an example of
unsupervised learning method. Unlike the previous neural net-
works, VAE does not predict a new output, but rather learns



Table 3
Top performing homology modeling programs in CASP13.

Rank Program/
Server

Year Country Interface Website References

1,3,5 I-TASSER 2008 USA Server (C++) https://zhanglab.ccmb.med.umich.edu/C-I-TASSER
https://zhanglab.ccmb.med.umich.edu/C-QUARK/

[80,81,117]

2,11 GALAXY 2012 South
Korea

Server (Python) http://galaxy.seoklab.org/ [86,87,118]

4 AlphaFold 2019 UK Package (Python and C++) https://github.com/deepmind/deepmind-research/tree/master/
alphafold_casp13

[88,119,120]

6 IntFOLD 2011 UK Server or Package https://www.reading.ac.uk/bioinf/IntFOLD/ [121]
7,9 RaptorX 2012 USA Server or Package http://raptorx.uchicago.edu/ [85,116]
8 VoroMQA 2017 Lithuania Server http://bioinformatics.ibt.lt/wtsam/voromqa [122]
10 SBROD 2019 France Server or Package (C++ and

Python)
https://gitlab.inria.fr/grudinin/sbrod [123]

12 MULTICOM 2010 USA Server or Package http://sysbio.rnet.missouri.edu/multicom_cluster/ [124,125]
13 Rosetta 2004 USA Server or Package (C++) https://www.rosettacommons.org/home [84,126]

Fig. 5. Neural network strategies used in protein 3D structure prediction tools (as described in [133,139]). (A) Convolutional Neural Networks – CNN are employed by
merging 1D features and 2D features dimensions into residue blocks that are used as input matrix for convolutional layers. Just like an optic nerve, the residue blocks are
convolved into smaller and smaller layers. (B) Recurrent Neural Networks – RNN are trained for generating sequences. (C) Variational Auto-Encoder – VAE is used for creating
similar structures that are correlated with an input structure. Properties are calculated by constructing a latent space map, which is then used to produce outputs. (D)
Generative Adversarial Networks – GAN use a gaming method to discriminate real input from fake input that is produced from a generator. The game continues until the
discriminator is unable to distinguish the real from fake outputs.
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new and simpler representation (map) of the original input
through an optimization method called variational inference.
VAE can take the protein 3D structure and learn certain proper-
ties (by constructing a map called latent space). This map is cor-
related with protein 3D structure properties. Convolutional VAE
was previously used for clustering of protein folds from molec-
ular simulations [134]. Obviously, this method has potentials
for design of similar protein/peptide 3D structures that have
similar properties [135].
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4. Generative adversarial network (GAN; Figure 5D) is a gaming
method between two adversaries: a generator and a discrimina-
tor. The former generates a map of a distribution input (e.g.
Gaussian), while the latter tries to learn if it is real or fake.
The process of learning by the two adversaries continues by
stochastic optimization until an equilibrium is reached. This
strategy have been successfully applied in loop modeling
[136], and for generating torsional angles [137], protein back-
bone models and 3D structures [138].

https://zhanglab.ccmb.med.umich.edu/C-I-TASSER
https://zhanglab.ccmb.med.umich.edu/C-QUARK/
http://galaxy.seoklab.org/
https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://www.reading.ac.uk/bioinf/IntFOLD/
http://raptorx.uchicago.edu/
http://bioinformatics.ibt.lt/wtsam/voromqa
https://gitlab.inria.fr/grudinin/sbrod
http://sysbio.rnet.missouri.edu/multicom_cluster/
https://www.rosettacommons.org/home
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It is important to emphasize that contact maps often contain
transitive noise coming from indirect correlations between resi-
dues [139]. Methods for direct correlation analysis are used to
remove this noise such as Direct Coupling Analysis (DCA), Protein
Sparse Inverse COVariance estimation (PSICOV), and network
deconvolution (ND). In modeling a sequence generator, DCA can
be used to calculate the probability of each generated sequence
by estimation of a partition function. Several DCA partition func-
tion estimation techniques have been developed and applied in
contact map prediction (Table 4). On the other hand, PSICOV
depends on the principle of partial correlations, where you calcu-
late the correlation between two elements while excluding the
Table 4
Protein contact prediction tools. The list was compiled from tools described in
[131,142,141].

Name Method* URL Reference

PSICOV PSICOV http://bioinf.cs.ucl.ac.
uk/downloads/PSICOV

[142]

GREMLIN plmDCA http://gremlin.bakerlab.
org

[143]

Freecontact mfDCA https://rostlab.org/
owiki/index.php/
FreeContact

[144]

CCMpred plmDCA https://
github.com/soedinglab/
ccmpred

[145]

FALCON-Contact clmDCA http://protein.ict.ac.
cn/clmDCA/

[146]

MetaPSICOV PSICOV http://bioinf.cs.ucl.ac.
uk/MetaPSICOV

[147]

PconsC PSICOV/plmDCA http://c.pcons.net/ [148]
BND BND http://www.csbio.sjtu.

edu.cn/bioinf/BND/
[149]

R2C SVM http://www.csbio.sjtu.
edu.cn/bioinf/R2C/

[150]

RaptorX Residual CNN http://raptorx.uchicago.
edu/ContactMap/

[151]

DeepContact Residual CNN https://github.com/
largelymfs/deepcontact

[152]

DeepCov CNN https://github.com/
psipred/DeepCov

[153]

SPOT-Contact Residual CNN/
BLSTM

http://sparks-lab.
org/jack/server/SPOT-
contact/

[154]

ResPRE CNN https://zhanglab.ccmb.
med.umich.edu/ResPRE/

[155]

TripletRes Multi-stage
residual CNN

https://zhanglab.ccmb.
med.umich.edu/
TripletRes/

[132]

ResTriplet CNN https://zhanglab.ccmb.
med.umich.edu/
ResTriplet/

[132]

DeepMetaPSICOV CNN https://github.com/
psipred/
DeepMetaPSICOV

[156]

DESTINI CNN http://pwp.gatech.edu/
cssb/destini

[157]

RBO-Epsilon CNN https://compbio.
robotics.tu-berlin.de/
epsilon

[158]

PconsC4 DCA/CNN https://github.com/
ElofssonLab/PconsC4

[159]

AlphaFold Residual CNN https://deepmind.com/ [120]
DeepCDpred Multi-stage

FFNN
[130]

DNCON2 Multi-stage
CNN

http://sysbio.rnet.
missouri.edu/dncon2/

[160]

*BLSTM: bidirectional long short-term memory neural networks. BND: balanced
network deconvolution. CNN: convolutional neural networks. DCA: direct-coupling
analysis (clmDCA: composite likelihood maximization DCA. mfDCA: mean-field
approximation DCA. plmDCA: pseudo-likelihoods DCA). FFNN: feed forward neural
networks. PSICOV: protein sparse inverse covariance analysis. SVM: support vector
machines.
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influence of a third element. ND and balanced network deconvolu-
tion (BND) applies complex neural network theory to calculate a
new matrix without the transitive noise.
9. Other modeling challenges

9.1. Intrinsically Disordered Proteins (IDPs)

The world of protein folding has one more mysterious – albeit
unfolded – tale that is yet to be told (or fold!). IDPs and the intrin-
sically disordered protein regions (IDPRs) encompass a vague area
of protein science with different rules and possibly unique func-
tions. IDPs and IDPRs are commonly present in all living organisms,
with a number that is proportional to the complexity of the organ-
ism. Nowadays, numbers are speaking about over 1150 IDPs that
possess their own folding rules in terms of conventional biophysi-
cal concepts, which are thought to constitute the understanding of
the world of protein 3D structure, thus breaking the ‘‘structure–f
unction” and ‘‘lock and key” paradigms [161–167]. In contrast to
globular proteins, IDPs not only lack unique 3D structures during
the journey of folding, but they are also unable to settle on just
one choice, with an extraordinary spatiotemporal heterogeneity.
In other words, while IDPs are jumping between the many struc-
tural states, they settle for different periods in every station on
the train of free energy map track. In theory, the folding of any part
of the IDPs is random and without exact structural homology.
These unsynchronized parts react with unique responses to the dif-
ferent environmental changes, which can be understood after
knowing that these proteins have relatively flat and simple free
energy landscape. This means that they do not have a singular
folded state in the free energy landscape with the most distin-
guished downhill. Hence, IDPs are characterized by reduced infor-
mational content in their amino acid sequences due to richness of
disorder-promoting residues (Arg, Pro, Gln, Gly, Glu, Ser, Ala, and
Lys). Biophysically speaking, this would leave far fewer restraints
for the polypeptide to fold and more solvent accessibility; promot-
ing a dynamic structural state [168–172].

In order to tackle this difficult paradox, state-of-the-art tools
are used to decipher structural complexity. The multidimensional
NMR can be combined with small-angle X-ray scattering (SAXS),
and then processed using advanced computational data integration
via molecular dynamics simulations [173]. Other approaches
include single-molecule fluorescence resonance energy transfer
[174], and atomic-force microscopy [175]. Traditional methods
are expensive and time-consuming, especially in the aspects of
purifying and crystallizing IDPRs; therefor researchers were hold-
ing their hopes on integrating state-of-the-art tools with advanced
computational methods [176,177]. The latter can be divided to
three approaches: The first one depends on physicochemical prop-
erties and propensity scales (e.g., IsUnstruct tool) [178,179]. The
second one depends on ML techniques (e.g., SPINE-D tool) [180].
The third one combines several predictors so it is called the meta-
approaches (e.g., Meta-Disorder predictor) [181]. One branch of the
meta-approaches is a template-based method that depends on
homologous known-structure proteins (e.g. GSmetaDisorder3D)
[182].

The scientific community has recently committed to answering
different questions regarding IDPs collaboratively. The critical
assessment of protein intrinsic disorder prediction (CAID) is the
first fully blind assessment of IDPs predictors, which was obviously
inspired by the CASP achievements. CAID addressed two major
points in its first edition: Firstly, providing a clear definition of
IDPs, and secondly, developing concise strategies to evaluate the
performance of prediction methods. Knowing that several editions
of the CASP experiment have attempted to tackle the same prob-
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lems without sufficient results, the CAID was more focused and
specialized in this area. CAID experiment has shifted the efforts
in providing promising data and in improving the definitions of
the boundaries of disordered binding regions [183–185].
9.2. Modeling multiple domains

Nearly 75% of proteins consist of multiple domains (average 2.1
domains in eukaryotes and 1.5 domains in prokaryotes) which are
independent structural and evolutionary units that are often
reshuffled in genomic rearrangements to form quaternary struc-
tures [186,187]. Understanding the 3D structure of multiple
domains proteins can shed the light on various biochemical mech-
anisms including the role of mutations in driving multiple domains
functions and their association with disease [188]. Many studies
have been trying to develop refinement tools for multi-domain
3D structure analysis based on data collected from SAXS [189–
191], and cryo-EM density maps [192]. Homology modeling-
based programs for prediction and/or assembly of multidomain
structure include ab initio domain assembly (AIDA; http://ffas.
burnham.org/AIDA/) [186] and Multidomain Assembler (MDA
package in UCSF CHIMERA) [187].
10. Future directions

To this day, the deterministic search algorithms mentioned in
the introduction have worked hand-in-hand with experimental
methods. Preliminary information from spectroscopic methods,
crystallography and even limited number of atomic contacts in
NMR experiments are used these days to optimize deterministic
algorithms of molecular dynamics and homology modeling to pro-
duce cheaper yet more accurate folding predictions. It is known
that excluding large sub-spaces of c-space allows for the detailed
scan of larger sized molecules [193]. Cryo-EM has broken signifi-
cant barriers recently, thus bringing detailed atomistic resolution
(up to the level of hydrogen atoms) to the study of protein com-
plexes, virus particles and sub-cellular organelles.

The lesson learned from deep learning of contact maps in recent
years highlights the need for adding more layers of information
and processing in future trends in homology modeling. Taking
the analogy of onion layers, homology modeling prediction accu-
racy has advanced each decade through adding new layers of infor-
mation and processing. This has been carried out by introducing
multiple templates and information of secondary structure predic-
tions, then by optimizing ab initio loop modeling, by employing
backbone-dependent rotamer libraries for side-chains addition,
and finally by developing deep learning contact maps. The evalua-
tion procedure itself evolved over time. It is very hard to predict
what the next layer of the onion would be or what deep impact
it can lay upon the field. However, we can at least warn that cur-
rently used programs should be written in a format that accepts
new additions at any step of the homology process. In this review,
we have neglected the developments in computer hardware, which
can make costly computations feasible in the near future. There has
been several promising strategies that may enhance 3D structure
predictions, such as chi1 angle prediction, new structural annota-
tions, solvent accessibility studies, molecular simulations, and
hybrid ab initio-homology modeling methods.

Even by using the same datasets, the process of deep learning
will continue to improve. One very optimistic recent view sees that
‘‘by the end of this century, it is expected that computers will have
the power to train neural networks with as many neurons as the
human brain” [194]. This view is supported by recent develop-
ments in this field. In the future, deep learning in dynamic environ-
ment will learn through reward-based reinforcement neural
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networks, which brings continuity to the prediction process. Sepa-
ration of the storage from computation will ultimately optimize
deep learning. Recurrent neural networks that can control reading
and writing from external memory are under development. ML
became more feasible after development of Graphics Processing
Units and currently deep learning will too become feasible through
development of Tensor Processing Units (TPUs), which can perform
computations in more dimensions. TPUs are specialized integrated
circuits developed by Google, LLC (Mountain View, CA, USA) for
applications in ML.

In conclusion, it is evident that the gradual and recent integra-
tion of CI and AI has played a significant role in the development of
homology modeling accuracy. CI contributed to the development
of evaluation methods and the addition of new steps in homology
modeling. AI contributed to the data processing and prediction effi-
ciency through contact maps ML. If we perceived the homology
modeling as a process of consequent steps executed by indepen-
dent modules, it is very clear that the accuracy of the homology
models was enhanced by introducing new modules, and also by
improving current modules. It is hoped that such specialization
in modeling tools development will make it possible to customize
and test combinations of modules in the future. Here, CI and AI will
play great role in integration of different resources for more effi-
cient modeling.
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