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Simple Summary: Dendritic cells recognize pathogen-associated molecular patterns in chicken
intestines and are part of the initial immune response. The immunoregulatory properties of prebiotics
acting in several ways in poultry have been known for many years. According to their function,
dendritic cells should play an indispensable role in the proven effects of prebiotics on the intestinal
immune system, such as through activation of T and B cells and cytokine production. Currently, there
are no studies concerning direct interactions in poultry between non-digestible feed components and
dendritic cells. Whereas most in vitro experiments with chicken dendritic cells have studied their
interactions with pathogens, in vitro studies are now needed to determine the impacts of prebiotics
on the gastrointestinal dendritic cells themselves. The present lack of information in this area limits
the development of effective feed additives for poultry production. The main purpose of this review
is to explore ideas regarding potential mechanisms by which dendritic cells might harmonize the
immune response after prebiotic supplementation and thereby provide a basis for future studies.

Abstract: Although the immunomodulatory properties of prebiotics were demonstrated many
years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main
antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract,
and they are the first line of defense in the immune response. Despite the crucial role of DCs in
prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics
and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and
chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties.
Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors
of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products
of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been
demonstrated in DCs. This review summarizes current knowledge about avian DCs in the
gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of
prebiotics within an avian model.

Keywords: avian dendritic cells; prebiotic; pattern recognition receptors; antigen-presenting
cell; chicken

1. Introduction

Gibson and Roberfroid [1] described prebiotics for the first time in their 1995 paper as
“a non-digestible food ingredient that beneficially affects the host by selectively stimulating the
growth and/or activity of one or a limited number of bacteria in the colon, and thus improves host
health.” This definition is incomplete, however, because it does not mention the immunomodulatory
properties of prebiotics. Prebiotics act in several ways to eliminate pathogen colonization in the
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gastrointestinal tract (GIT). Some prebiotics bind to type 1 fimbriae of pathogenic bacteria and inhibit
their colonization. Additionally, prebiotics cause higher production of mucin by increasing the
number of goblet cells. After prebiotic treatment, beneficial microbiota can produce organic acids
and bacteriocins that subsequently prevent colonization by pathogenic bacteria [2]. Prebiotics can
directly affect the immune response by pathogen-associated molecular patterns (PAMPs). PAMPs
are recognized by pattern recognition receptors (PRRs) expressed on antigen-presenting cells of the
immune system [3]. Dendritic cells (DCs) are the main antigen-presenting cells, and they are universal
immune cells responsible for several functions. These cells are capable of endocytosis, exocytosis,
antigen processing and presentation, and cytokine production as well as activating innate immune
responses and specific acquired immunity [4]. DCs are located in tissues that are in contact with the
external environment. The GIT is the part of the chicken body interior most exposed to the external
environment. DCs are well equipped with several types of receptors to distinguish PAMPs in the GIT,
and after their activation, DCs migrate to the lymphoid tissues where they interact with T cells in
diffuse lymphoid tissues and with B cells in germinal centers. In the intestine, stimulation of DCs is
required to activate the host-protective immune response to infections [5].

Despite the quintessential role of DCs in prebiotic-induced immunomodulation in chickens, there
have been few studies about interactions of avian DCs with prebiotics. Experiments using human or
mouse models, meanwhile, have shown direct and indirect effects of prebiotics on DCs. In the first
part of this review, we summarize our knowledge about intestinal DCs. In the second part, we focus
on the potential role of DCs in prebiotic-induced immunomodulatory processes.

2. Dendritic Cells Are the Most Important and Effective Antigen-Presenting Cells

As major antigen-presenting cells, DCs play crucial role in the immune response because they
can present antigens to naive T cells and B cells. Although, this ability has been also proven in
macrophages [6]. The antigen-presenting function of B cells is apparently minor because Beal et al. [7]
have proven the normal T cell response in bursectomized chickens treated with Salmonella enterica
serovar Typhimurium. DCs and macrophages are derived from bone marrow hematopoietic stem cell
precursors expressing CD45+ [4]. The antigen-presenting function in macrophages is complementary
because these cells are well equipped to destroy entering pathogens. DCs, on the other hand, are crucial
in activating the adaptive immune response [8]. Antigen presentation consists of antigen intake,
subsequent processing of antigen in lysosomes, then presentation of antigen peptides by major
histocompatibility complex (MHC) class I and class II molecules to naive T cells [9]. During this
process, antigen peptides in DCs are not fully destroyed in lysosomes because DCs have much lower
levels of lysosomal proteases and are capable to alkalizate the environment in lysosomal units [10,11].
Proteolytic activity in macrophage lysosomes is much greater, and that limits their antigen-presenting
function [11]. Based on the phagosome acidification level, DCs and macrophages can be distinguished
by surface markers. De Geus et al. [12] characterized cells in chicken lungs after uptake of fluorescently
labelled beads coated with either lipopolysaccharide (LPS) or inactivated avian influenza virus in
relation to phagosome acidification. They observed higher acidification expressed as lower pH in
CD40+, CD11+, and KUL01+ cells and identified these as macrophages [13]. Cells that did not decrease
pH in their lysosomal units expressed typical DC activation markers on their surfaces such as MHC II+

and CD80+ [12].

3. Avian Dendritic Cells

Avian DCs were described for the first time by Olah and Glick as secretory cells in the medulla
within the bursa of Fabricius [14] and subsequently in the germinal centers of cecal tonsils in
chickens [15]. DC subtypes are derived from hematopoietic stem cell progenitors, but Gomez
Perdiguero et al. [16] have proven that epidermal DCs could be derived from yolk-sac-derived
erythro-myeloid progenitors. Development of DCs through ontogenic pathways was reviewed
by Merad et al. [17], and ontogenesis with a focus on chicken dendritic cells was summarized by
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Nagy et al. [4]. For contact with antigens, it is necessary for DCs to be directly located in almost all tissues
of the chicken body, including mucosal surfaces, interstitial tissues, skin epidermis, peripheral blood,
and non-lymphoid tissue, but the lymphatic tissue is crucial for DC migration and antigen-presenting
functions [18]. In recent years, there have been increased numbers of in vitro studies using chicken
DCs treated with viral diseases such as infectious bursal disease [19,20], Newcastle disease [21], and
avian influenza [22], or with bacterial diseases like Salmonella [23,24]. Numerous specific markers
have been described for in vitro characterization of chicken DCs. Macrophage progenitors, monocytes,
and DCs express colony-stimulating factor 1 receptor (CSF1R), which is a target for granulocyte
macrophage colony-stimulating factor necessary for differentiation and proliferation [25]. Constitutive
expression of CSF1R is a way to distinguish monocytes from other myeloid cells, including heterophils
and thrombocytes [26]. Immature bone marrow-derived DCs show expression of MHC class II+,
CD11c+, CD40+, CD11+, CD86+, CD83−, and DEC205− [27]. Chemokine receptor CCR6 is expressed
on immature DCs. After stimulation of CCR6, DCs migrate to sites of antigen entry. After stimulation
by antigen, DCs mature and acquire the ability to present antigen to T cells. Maturation is represented
by up-regulation of CCR7 and down-regulation of CCR6 [28]. Stimulation by LPS causes great
increase in expressions of CD40, CD11, CD86 [27], CD83 [29], and DEC205 [30]. Kalaiyarasu et al. [31]
have suggested that induction of nitric oxide synthase may also be used as a maturation marker for
chicken DCs.

4. Dendritic Cells in the Chicken Gastrointestinal Tract

The GIT has the most extensively exposed surface within the body, and DCs play the most important
role in distinguishing between the harmless particles and potential pathogenic microorganisms that
are continuously passing through the GIT [32]. Dendritic cells have been described in clusters of
gastrointestinal-associated lymphoid tissue (GALT). Esophageal tonsil consists of mucosa-associated
tissue around the entrance of the proventriculus. Dendritic cells in esophageal tonsils are exposed to
undigested feed containing pathogens. For this reason, these DCs can play a crucial role in successful
application of oral vaccines and nutritional immunomodulators such as prebiotics. Lymphoepithelial
tissue includes vimentin+, MHC+, and 74.3+ stellate-shaped cells recognized as a DC. Typically, follicular
dendritic cells (FDCs) in germinal centers are covered by an electron-dense substance containing IgG
and express vimentin and 74.3 [33]. The same FDC has been described in germinal centers of pyloric
tonsils located at the beginning of the duodenum [34]. In Peyer’s patches, ellipsoid-associated cells have
been described that are proposed to be precursor cells of interdigitating dendritic cells (IDCs) and FDCs,
depending on the location in the lymphoid tissue [35]. Ellipsoid-associated cells have been found in
spleens within the antigen-trapping zone of the blood–spleen barrier. After their stimulation by antigen,
these cells differentiate into IDCs, induce germinal center formation by recruiting proliferating B cells,
and subsequently differentiate into FDCs [36–38]. The observed presence of ellipsoid-associated cells in
spleen suggests that these cells migrate from spleen to the GIT, where they serve as DC precursors [39].
After Eimeria infection in chickens, IDCs also have been found, together with FDC-like cells, interacting
with parasite in cecal tonsils. However, isolated CD45− and MHC II− cell populations are unique
within the functional properties of FDCs, such as stimulation of IgG production by allogeneic B cells in
an MHC-unrestricted manner. Another type of cell consists of CD45+, MHC I+, and MHC II+ IDCs
with abilities to induce proliferation of naive allogeneic CD4+ cells and augment the secretion of IFN-γ
by allogeneic cells. It is noteworthy that the FDCs did not express the peripheral blood mononuclear
cells marker CD45. This was in contrast to other studies that proved CD45 expression of FDCs [4,5].

5. Avian Dendritic Cells Pattern Recognition Receptors and Their Ligands

5.1. Toll-Like Receptors

PRRs play an important role in the innate immune response because it is through PRR
antigen-presenting cells, such as DCs, that pathogens are recognized because of the occurrence
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of PAMPs on pathogen surfaces. Toll-like receptors (TLRs) are among these receptors. Immature DCs
express a full set of TLRs, and after ligand binding maturing begins [40]. TLR ligands bind to TLRs, and
this is the most common means of activation to become mature DCs [41]. To date, the identified TLRs
in chickens are TLR 1A, TLR 1B, TLR 2A, TLR 2B, TLR 3, TLR 4, TLR 5, TLR 7, TLR 15, and TLR 21 [42].
Each TLR has a unique specificity to a different PAMP, so individual TLRs have limited responses
to pathogens. The TLR family comprises a wide range of ligands from viruses, bacteria, fungi, and
parasites and can ensure recognition for most known pathogens. LPS is the major component of
Gram-negative bacteria, and most pathogens have this type of cell wall. TLR 4 is the main receptor for
LPS, and CD14 is important for its function as required for the microbe-induced endocytosis of TLR 4.
In DCs, this CD14-dependent endocytosis pathway is up-regulated upon exposure to inflammatory
mediators [43,44]. Similarly, TLR 2B has affinity for LPS, lipopeptide, and glycopeptide [45]. TLR 5
recognizes flagellin, a monomeric subunit occurring in flagella of Gram-positive and Gram-negative
bacteria [46]. TLR 3, TLR 7, and TLR 8 ensure intracellular recognition of RNA and DNA, so their
specificity is mainly to viral compounds [47]. TLR 15 is activated by fungal proteases and also
by some proteases of bacterial origin [48]. TLR 21 recognizes a broad repertoire of synthesized
cytosine–phosphate–guanine (CpG) DNA molecules and responds to bacterial chromosomal DNA.
CpG is a known ligand of human TLR 9, which is absent in avian species [49,50]. Different ligands
determine the localization of TLRs in DCs because recognition of bacterial antigens requires localization
of TLR 1, TLR 2, TLR 4, and TLR 5 on the outer surfaces. On the other hand, TLR 3, TLR 7, and
TLR 8, with their ability to distinguish viral nucleic acids, are located in intracellular endosomes and
lysosomal compartments, thereby enabling them to determine pathogen nucleic acids [40].

Toll-Like Receptor Ligands

Various TLR ligands have been studied for vaccine adjuvant function. Cytosine–phosphate–
guanine oligonucleotides (CpG ODNs) bind to TLR 21, and CpG ODN treatment has been proven to
enhance vaccine immunogenicity against Salmonella Typhimurium [51], Eimeria [52], and low pathogenic
avian influenza subtype H9N2 [53]. Furthermore, CpG ODN and LPS can delay the progression
of Marek’s disease, perhaps because of higher specific antibody response [54]. TLR 4 ligands also
have proven potential as vaccine adjuvants for in ovo vaccination, probably because avian influenza
virus replication is reduced because of induction of IFN-γ stimulatory genes in chorioallantois
membranes [55]. St. Paul et al. [56] studied the immunogenic effects of TLR 2 ligand Pam3CSK4 and
flagellin on polarizing of T cells into Th1 or Th2 pathways. Both ligands stimulated the production of
Th1-associated cytokines IFN-γ and IL-12 as well as Th2-associated cytokine IL-4 and induced strong
direct immune response. Pam3CSK4, LPS, and CpG ODN also are able to induce much higher nitric
oxide production in macrophages [57]. Pam3CSK4 and poly I:C (TLR 2 and TLR3 ligands, respectively)
synergistically up-regulated IFN-ß, IFN-γ, IL-12, and IL-4, and they cross-inhibited IL-1ß, IL-10, and
iNOS in peripheral blood mononuclear cells. This reduced the destruction of B cells as well as bursal
damage caused by infectious bursal disease virus (IBDV) when used with a hot IBDV vaccine [58].
Targeting TLR 3 and TLR 21 by a combination of their ligands, double-stranded RNA and CpG ODN,
respectively, caused a pro-inflammatory immune response in chicken monocytes by up-regulating IL-8,
IL-1β, IL-6, and MIP-1β and promoting Th1-biased immune response to chicken monocytes. In later
stages, up-regulation of IL-10 and IL-4 is indicated to be a self-regulatory mechanism for controlling
excessive inflammation [59]. Recent results have shown that using TLR 4 and TLR 21 ligands and
their combination resulted in more sensitive innate immune responses in macrophages from birds
4 weeks old compared to birds 1 week old. These results suggest a need to reconsider the use of vaccine
adjuvants in very young birds [60].

5.2. Carbohydrate-Binding Proteins

Carbohydrate-binding proteins (lectins) can recognize glycan structures on pathogen surfaces.
They comprise various subtypes, such as galectins, siglecs, and collectins. Among the collectins
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are mannose-binding lectin [61,62], surfactant protein A (SP-A), and the specific chicken collectins
CL-1, CL-2, and CL-3 [63]. A calcium-dependent chicken lung lectin also has been identified in
the chicken respiratory tract [64]. On DEC205+ chicken myeloid cells, DC-specific intercellular
adhesion, molecule-3-grabbing non-integrin (DC-SIGN), and macrophage galactose binding lectin
were observed [8]. The use of monoclonal antibodies against C-type lectin endocytic receptor DEC205
on DCs provides potential for improving the immune response due to enhanced processing and
presentation of antigen via MHC II [65,66]. Mannose receptor (MR) is a well-described cell-bound
receptor in macrophages, but chicken DCs also express MR [8,67]. The roles of MR include recognition
of mannan structures in a wide range of bacteria and viruses [68] and, subsequently, processing and
antigen presentation by antigen-presenting cells [69,70].

5.3. Nucleotide-Binding Oligomerization-Domain-Like Receptors

For antigen recognition to function appropriately, receptors must be located in the cytosol to
detect intracellular PAMPs, such as nucleotide-binding oligomerization-domain-like receptors (NODs).
Among the NODs are NOD-1, which is able to recognize γ-glutamyl diaminopimelic acid, and NOD-2,
which recognizes muramyl dipeptide, both of which are breakdown products of peptidoglycan
that commonly occur on many bacteria [71,72]. These receptors are involved in the creation of
inflammasomes, which, after antigen catalyzing activation of immature pro-inflammatory cytokines
IL-1β and IL-18, are able to mature IL-1β and IL-18 and subsequently activate inflammatory processes
or cell death. Inflammasomes are named after the NOD-like receptors with which they are involved,
so we distinguish the NLRP3, NLRP1, and NLRC4 inflammasomes [73]. NLRC5 is a positive regulator
of IFN-α and IFN-ß expression [74] and a negative regulator of MHC I expression [75,76].

5.4. Retinoic-Acid-Inducible Gene I-Like Receptors

Another important family of receptors located in the cytosol and well equipped for virus PAMP
recognition consists of retinoic-acid-inducible gene I-like receptors (RLRs). The most important viral
RNA-recognizing members of this group are RIG-I and melanoma differentiation-associated protein 5
(MDA5), both of which are able to distinguish cytosolic triphosphates in single-stranded RNA and
double-stranded RNA [77]. Both subtypes have the same adaptor protein, known as mitochondrial
antiviral-signaling protein (MAVS), involved in the RLR-mediated signaling pathway [78]. MAVS
depletion disrupts pro-inflammatory and anti-virus cytokines production that is promoted by virus
infection, so MAVS has an indispensable role in innate anti-virus immunity [79]. In contrast to
waterfowl, chickens lack RIG 1 [80]. RIG 1 plays a crucial role in the immune response against
Newcastle disease by up-regulation of IFN-β and mRNA levels of IRF 3 and IFIT1, which has been
proven in geese [81]. In cases of low pathogenic avian influenza, ducks can up-regulate RIG 1 and limit
virus replication in lungs by robust up-regulation of IFN-β [82,83]. In chickens, the role of RIG 1 is
taken over by MDA5, but MDA5 probably does not play a decisive role during the immune response
to influenza virus. MDA5 function is highly dependent on influenza strain because different strains
have different RNA complements that could interact differentially with MDA5 [84]. Furthermore, the
MDA5 signaling pathway is inhibited by the viral non-structural protein 1 [85]. On the other hand, it
also has been proven that MDA5 strongly stimulates INF-β after infection by avian influenza virus.
Thus, it is not unambiguous that a higher sensitivity to avian influenza virus in chickens is related to
an absence of RIG 1. In their recent review, Evseev and Magor [86] have summarized several other
differences between ducks and chickens in relation to immunity against avian influenza.

6. Role of Dendritic Cells in Prebiotic-Induced Immunomodulation

DCs harmonize the immune response in chicken intestines by producing cytokines and stimulating
other immune competent cells. Prebiotics are able to affect DC function in both direct and indirect
ways and beneficially modulate the immune response [3].
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6.1. Mannan Oligosaccharides

Mannan oligosaccharides (MOS) occupy the outer layer of yeast cell wall. Yeast cell wall
glycoproteins contain 50–90% carbohydrates that are characterized as mannans. Mannans consist of
D-mannose subunits covalently bonded with proteins by two linkages: O-linked oligosaccharides and
N-linked oligosaccharides. The first linkage consists of five mannose residues O-glycosylated with
threonine or serine. Second are N-linked oligosaccharides that are N-glycosylated [2]. DCs are well
equipped by PRRs to recognize yeast cell wall structures, and some studies have suggested which
receptors are involved in this process. Studies in avian models have proven greater expression of
TLR 2 and TLR 4 in chickens fed MOS [87,88] or after in ovo administration [89]. TLR 4 together
with the MD-2 molecule constitutes a known receptor for LPS from Gram-negative bacteria [45,90].
TLR 2 is a principal receptor for peptidoglycan recognition of both Gram-negative and Gram-positive
bacteria [91]. In a study with human mononuclear cells and Candida albicans, Netea et al. [92] found
several receptors to be able to target different parts of MOS molecules. First, TLR 4 binds O-linked
oligosaccharides from the MOS structure. MR, together with DC-SIGN, recognizes N-linked mannans
and stimulates production of pro-inflammatory cytokine IL-6 [93]. Alizadeh et al. [88] proved yeast cell
wall recognition by MR because MR was highly expressed in the ileum and cecum of chickens fed yeast
with MOS-rich cell walls. Notably, chickens treated with Clostridium perfringens and supplemented
with MOS had significantly higher expression of TLR 2 and TLR 4 in the intestine compared to a group
treated only with Clostridium perfringens [87]. Furthermore, Lu et al. [94] treated chickens only with
Clostridium perfringens and showed no significant up-regulation or down-regulation of TLR 2 and
TLR 4. This suggests an ability of MOS to strengthen the recognition of bacteria by DCs. Stronger
stimulation of TLR 2 and TLR 4 by MOS leads to activation of an MyD88-dependent pathway and
production of pro-inflammatory cytokines such as IL-12 or TNF-α. After MOS supplementation,
significant up-regulation of IL-12 and IFN-γ in ileum and cecal tonsils of chickens was determined [87].
IL-12 is produced by DCs and stimulates development of IFN-γ-producing Th1 cells from naïve
CD4+ T cells [94–96]. As a pro-inflammatory cytokine, TNF-α promotes inflammatory processes.
In mice, however, it has been proven that production of TNF-α by immature DCs is necessary for
the development of IL-10-producing T cells. This points to TNF-α’s having an immune regulatory
nature [97]. Immune regulatory mechanisms could explain the higher production of IL-10 in intestines
of chickens supplemented with MOS [87,88]. DCs produce IL-10 in order to mitigate excessive
inflammation. Rajput et al. [98] stimulated chicken bone marrow-derived dendritic cells (BMDDCs)
with MOS-covered Saccharomyces boulardii (SB) and found significantly greater production of IL-10,
thus confirming a self-regulatory mechanism in DCs. Chicken BMDDCs pulsed with SB under in vitro
conditions showed responses similar to those observed in previous studies with MOS-treated chickens.
Scanning electron microscopy revealed attachment and various engulfing stages of SB in chicken
BMDDCs at different time intervals. Transmission electron microscopy of SB-pulsed chicken BMDDCs
found lower levels of SB internalization with BMDDCs 3 h post-stimulation. On the other hand,
6 and 12 h post-stimulation, most SB particles were engulfed by DCs and showed various stages of
degradation. Determination of MHC II and costimulatory molecules CD40, CD80, and CD86 expression
was consistent with the electron microscopy findings because they increased with time post-stimulation.
BMDDCs showed greater expression of TLR 2 and TLR 4 with up-regulation of the MyD88 pathway
and NF-kB activation 6 h post-stimulation. Expression of pro-inflammatory cytokines was almost
the same as that in the untreated control group. On the other hand, expression of anti-inflammatory
cytokines TGF-β and IL-10 also was up-regulated [99]. Determination of anti-inflammatory cytokines
expression was made 12 h post-stimulation, by which time self-regulatory mechanisms of DC were
up-regulated [98].

Signaling through MR on DCs can support MR-mediated internalization and favor
cross-presentation through MHC I in addition to MHCII-mediated presentation of antigens [68]. CD8+

T cells activated after cross-presentation play an important role in specific responses to cell-associated
viral antigens [100].
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Tohid et al. [101] evaluated antibody titers in chickens supplemented with MOS and vaccinated
against avian influenza virus (AIV). An experimental group of chickens fed MOS had significantly
higher production of AIV antibody titers in comparison to a vaccinated control group. DCs can
play an important role in mechanisms contributing to much better antibody responses against
AIV. It has been proven that chicken DCs recognize glycans (terminal Galα1-3Gal-R, chitotriose,
Fucα1-2Galβ1-4GlcNAc-R) from AIV by MR and DEC205 receptors [8]. PAMP from MOS can be
recognized by DCs located among epithelial cells in Lieberkühn crypts along the intestine [5]. Goblet
cells play an important role in antigen delivery because they work as carriers delivering low molecular
weight antigens from the intestinal lumen to DCs [102]. Subsequently, the activated T cells and DCs
migrate to germinal centers of gastrointestinal-associated lymphoid tissue, where they activate B cells
and stimulate production of plasmatic and memory B cells. Subsequently, B cells migrate through
the lamina propria to the intestinal villi, where DCs and T cells induce in B cells high levels of IgA
production. Subsequently, a part of B cells migrates through the bloodstream to the germinal centers of
the spleen, where they activate other B cells and stimulate systemic antibody protection [103]. Newcastle
disease virus, like other viruses, contains sialic acid-dependent glycans that can be recognized by
DCs [104]. Furthermore, MOS supplementation has been shown significantly to increase antibody
titers against Newcastle disease virus, thereby indicating a role of DCs in recognizing PAMP structures
and initiating antibody response, which is true also in the case of AIV [105–108]. In a study by
Gomez-Verdusco et al. [108], MOS supplementation significantly increased IgA production in the
intestine and subsequently significantly decreased Eimeria oocyst output in chickens. It is noteworthy
that results from studies with MOS supplementation suggest an ability of MOS to induce a Th1-type
immune response. Some experiments have observed increased production of immunoglobulins
associated with the Th2 pathway. Further research focused on DCs is needed to distinguish which
factors influence the immunomodulatory effects of MOS.

6.2. β-Glucans

β-glucans are composed by polymerization of glucose through 1,3/1,6 β-glycoside linkages [109].
In addition to their occurring in the yeast cell wall, we can find β-glucans in other sources having
different structures. For instance, β-glucans in cereals have 1,4 β-linkages between the glucopyranosyl
molecules. β-glucans located in bacteria cell wall have only 1,3 β-linkages [110].

Many studies have been performed to determine β-glucans’ immunomodulatory properties
in chicken intestines. Experiments have proven the binding capacity of barley β-D-glucan to the
dectin-1 receptor [111,112]. Additionally, stimulation of dectin-1 with the specific ligand curdlan
caused significant increase in production of reactive oxygen species in chicken peripheral blood
mononuclear cells [113]. In several studies, it has been proven that addition of β-glucans to chicken
diets led to strong up-regulation of nitric oxide synthase [114,115]. DC activation is accompanied by
an increase in nitric oxide synthase production [31]. Based on findings described above, it appears
that the main receptor involved in β-glucan recognition is dectin-1, a molecule with T cell stimulatory
capacity [116]. In macrophages, Yadav and Schorey [117] showed that β-glucans were recognized
by the dectin-1/TLR 2 receptor complex. β-glucans are well-known immunomodulators, and several
studies have been conducted to determine which pathway (Th1 or Th2) is favored after β-glucan
supplementation. Up-regulation of IL-2 and IL-18 expression had previously been described, thus
suggesting involvement of the Th1 immune response [118,119]. Moreover, Cox et al. [114] described
robust down-regulation of IL-4 and IL-13 gene expression in chicken intestines. In another study,
Cox et al. [115] challenged chickens with Eimeria parasites and found protective effects of β-glucan
supplementation through activation of the Th1 pathway, which is necessary for an appropriate immune
response against Eimeria. In a study with mice, Ding et al. [116] reported an indispensable role of DC
autophagy in activation of cytotoxic T cells by the Th1 pathway upon β-glucan activation. Interestingly,
autophagy-deficient DCs showed down-regulation of costimulatory molecules CD80, CD86, and MHC
II, as well as decreased production of TNF-α and nitric oxide synthase. CD4+ T cells cocultured
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with autophagy-deficient DCs had depressed IFN-γ production. Results of these studies support
the view that β-glucans induce Th1 pathway activation. On the other hand, in studies by Cox et al.
IFN-γ was down-regulated [114,115]. DCs produce IFN-γ in order to activate Th1 cells, and they
produce additional IFN-γ and IL-2 for stimulating natural killer cells, macrophages, and cytotoxic
T cells, as well as to inhibit the Th2 pathway [120]. Macrophages stimulated by β-glucans produce
IL-1, a cytokine involved in the Th2 pathway. In the case of IL-4, which is a crucial cytokine for the
Th2 pathway, inconsistent results were found. In Eimeria-challenged chickens fed with β-glucans,
IL-4 was down-regulated [115], but if chickens were unchallenged with pathogens at 14 days of age,
IL-4 was up-regulated in chickens fed supplemental β-glucan [114]. Additionally, chickens fed with
β-glucans have slightly higher serum levels of IgG and much higher production of intestinal IgA [119].
Moreover, salmonella-treated chickens fed supplemental β-glucans had higher levels of serum IgG and
IgA-producing cells in the intestine [121]. IgA can have immunomodulatory properties because it has
been proven that IgA is involved in down-regulation of IFN-γ, TNF-α, and IL-6 while sustaining the
level of IL-10. In this manner, IgA suppresses severe inflammation caused by some pathogens [122].
DCs play a key role in harmonizing inflammatory processes, and they possess the ability to produce
IFN-γ, TNF-α, IL-6 [31], and IL-10 [123,124]. DC-SIGN and MR are involved in IgA recognition by
DCs [125]. Recognition of IgA by DCs is accompanied by inhibition of the Th1 cytokine IL-12 [126]
and increased IL-10 production [127]. Increased IgA production in the intestine may have a regulatory
effect on intestinal DCs.

β-glucan particle size is an important factor for DC recognition by different receptors.
Elder et al. [128] evaluated the influence of curdlan (a large β-glucan molecule) and curdlan
microparticles (a smallβ-glucan molecule) on human DCs. They suggested critical roles of phagocytosis
and dectin-1 receptor. Curdlan microparticles are phagocytosed easily, resulting in loss of dectin-1
surface expression. On the contrary, curdlan is not phagocytosed, and dectin-1 expression is maintained.
Curdlan stimulated expression of IL-1β, IL-6, and IL-23 by DCs whereas curdlan microparticles did
not stimulate IL-1β, IL-6, and IL-23 expression. TSLP and CCL22, factors associated with the Th2
immune response, were not influenced by β-glucan particle size. Therefore, DCs may recognize
prebiotic particles by different receptors, and subsequently DCs produce cytokines in order to stimulate
different pathways.

6.3. Short-Chain Fatty Acid Production Induced by Fructooligosaccharides

Fructooligosaccharides (FOSs) consist of as many as 10 monomeric β-2/1-linked fructosyl units.
The best-known FOS is inulin, a widely used prebiotic obtained from chicory root [129]. Relatively
consistent results have been observed in experiments evaluating effects of FOS supplementation on the
immune response in poultry. For example, broilers supplemented with several levels of inulin expressed
lower levels of IL-6 and IFN-γ and, conversely, significantly increased cecal IgA concentration [130].
FOS caused significantly higher numbers of IgA-positive cells in the lamina propria of the ileum and,
at the same time, up-regulation of the important Th2 cytokine IL-4 in salmonella-challenged laying
hens [131]. Additionally, FOS treatment has been shown to significantly increase IgG and IgM antibody
titers in plasma [132]. These results suggest down-regulation of the Th1 response and up-regulation of
the Th2 pathway in FOS-supplemented chickens.

FOSs have low degradability by intestine enzymes due to their β-2/1-linked fructosyl bonds, so
large quantities of FOS pass into the ceca [133]. Short-chain fatty acids (SCFAs) are FOS metabolites
produced by microbiota in chicken ceca, and some of them show anti-inflammatory properties that can
explain the indirect influence of FOS on the gastrointestinal immune system [134]. Ding et al. [135]
evaluated butyrate, propionate, valerate, and acetate production in chickens supplemented with FOS.
They found increased production of all evaluated SCFAs, but the highest production was of butyrate.
Similarly, Rehman et al. [133] found the highest production of butyrate and slightly greater production
of propionate in inulin-fed chickens. On the contrary, levels of valerate and acetate were not affected
by inulin treatment.
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In an avian model, only Babu et al. [136] have tested the influence of FOS on the ability of chicken
HD11 macrophages to phagocytose and eliminate Salmonella enteritidis. Their results showed improved
ability of HD11 macrophages to eliminate S. enteritidis by preventing IL-1β-associated macrophage
apoptosis. The direct influence of SCFAs on avian DCs is poorly understood, but mechanisms by
which SCFAs affect DC function have been reported in other species. DCs and other immune cells
express specific receptors for microbial metabolites. Nastasi et al. [137] described GPR43 and GPR109A
receptors on human monocyte-derived DCs (HMDDCs). GPR43 is stimulated primarily by acetate
and propionate, and GPR109A is a receptor for butyrate [138]. HMDDCs treated with butyrate and
propionate down-regulated pro-inflammatory chemokines CCL3, CCL4, CCL5, CXCL9, CXCL10, and
CXC. Moreover, butyrate and propionate inhibited expression of LPS-induced IL-6 and IL-12p40
cytokine production, yielding a strong anti-inflammatory effect on DCs [137]. In another study,
butyrate inhibited the Th1 pathway by inhibiting IL-12 and IFN-γ and promoting IL-10 cytokine
production in HMDDCs. Expressions of costimulatory molecules CD80, CD83, and MHC II were
substantially reduced by butyrate [139]. SCFA concentration is known to play an important role,
as Iraporda et al. [140] proved dose-dependent inhibition of pro-inflammatory cytokines by butyrate
and propionate. Butyrate and propionate have shown to be effective from concentrations of 1–5 mM.
Singh et al. [141] revealed the importance of GPR109A activation in DC-mediated immunomodulation
caused by butyrate. GPR109a-knockout mice had reduced numbers of IL-10-producing CD4+ T cells
and an increase in those of IL-17-producing T cells. Additionally, DCs incubated with butyrate or
niacin (the next ligand of GPR109A) had higher expressions of l10 and Aldh1a1, factors involved in
differentiation of naive T cells to regulatory T cells. FOS supplementation also increases the numbers
of Bifidobacterium in chicken cecum [142]. Coculture of Bifidobacterium with monocyte-derived DCs
demonstrated production of IL-2, an important cytokine for regulatory T cell expansion [143]. Based
on these findings, Corrêa-Oliveira et al. [144] suggested DC-mediated activation of regulatory T cells
in order to suppress inflammatory T cells after butyrate treatment. In the chicken genome, more than
20 paralogs of GPR43 were identified, and the strongest expression of GPR43 was found in peripheral
blood mononuclear cells [145]. However, occurrence of the GPR109A receptor in chickens has never
been studied [146]. SCFAs affect DC function, and similar modes of action can be assumed in chickens
as in mammals.

6.4. Chitosan Oligosaccharides

Chitosan, an insoluble material that is not broken down by digestive enzymes, consists of
N-acetylglucosamine units with β-1/4 linkages [147]. DCs can recognize chitin fragments by
several receptors, while MR ensures endocytosis and formation of endosomes. Dectin-1 activation
induces phagocytosis and respiratory burst. TLR 2 signaling activation causes up-regulation of
pro-inflammatory cytokines such as IL-12 and TNF-α [148]. Huang et al. [147] observed increased
levels of plasma IgG, IgM, and IgA in chitosan-fed chickens. In another study, increased levels of IgM
were found, but there was no effect on IgG and IgA. Additionally, higher serum concentrations of IL-1β,
IL-6, and IgM, as well as greater nitric oxide synthase activity, were determined in chickens 21 days
old that were fed chitosan. Older (42 days) chickens had higher levels of TNF-α and IFN-γ [149].
It has been proven that differences in chitosan fragment size are associated with up-regulation of
different receptors. C-type lectins, dectin-1, and MR seem to be up-regulated by smaller particles under
40 µm. TLR 2 recognizes particles between 40–70 µm and subsequently stimulates pro-inflammatory
pathways. For this reason, chitosan can modulate production of cytokines by stimulating different DC
receptors [150].

7. Conclusions and Future Developments

Better understanding of the interactions between avian DCs and prebiotics has huge potential for
creating more effective prebiotic feed additives or vaccine adjuvants in poultry. We have no information
to date about the effects of galactooligosaccharides and xylooligosaccharides on DC function, so further
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research is needed in those areas. Moreover, it is necessary to determine the direct or indirect ways
that prebiotics can influence DC function to modulate the immune response. In the gut, prebiotics can
change microbiota composition as well as stimulate production of SCFAs and other substances that
could influence DC. That means it is difficult to recognize which factor is involved in DC-induced
immunomodulation. For this purpose, numerous in vitro studies must be performed to determine
impacts of prebiotics on gastrointestinal DCs. Nowadays, there is a methodology to culture DCs from
precursor cells in bone marrow. Nevertheless, because DCs located in the intestine express some
unique properties, and for the sake of more objective results, it would be ideal to culture these cells
from the intestine. A future development in DC culture would be associated with the use of 3D cell
cultures. This approach promises to culture DCs directly from gastrointestinal-associated lymphoid
tissue and for subsequent use in in vitro studies.
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