
Volume 6 Issue 2
ISSN 2694-7161
www.ejobsat.com

QUALITY OF WORD VECTORS
AND ITS IMPACT ON NAMED ENTITY
RECOGNITION IN CZECH
František Dařena1, Martin Süss1
1Mendel University in Brno, Czech Republic

DAŘENA, František, and SÜSS, Martin. 2020. Quality of Word Vectors and its Impact on Named Entity
Recognition in Czech. European Journal of Business Science and Technology, 6 (2): 154–169. ISSN 2694-7161,
DOI 10.11118/ejobsat.2020.010.

ABSTRACT

Named Entity Recognition (NER) focuses on finding named entities in text and classifying
them into one of the entity types. Modern state-of-the-art NER approaches avoid using hand-
crafted features and rely on feature-inferring neural network systems based on word embeddings.
The paper analyzes the impact of different aspects related to word embeddings on the process
and results of the named entity recognition task in Czech, which has not been investigated so
far. Various aspects of word vectors preparation were experimentally examined to draw useful
conclusions. The suitable settings in different steps were determined, including the used corpus,
number of word vectors dimensions, used text preprocessing techniques, context window size,
number of training epochs, and word vectors inferring algorithms and their specific parameters.
The paper demonstrates that focusing on the process of word vectors preparation can bring a
significant improvement for NER in Czech even without using additional language independent
and dependent resources.

KEY WORDS

Named Entity Recognition, word embeddings, word vectors training, natural language processing,
Czech language

JEL CODES

C63, C88

1 INTRODUCTION

Named Entity Recognition (NER) is one of the
important subtasks of Information Extraction.
It focuses on finding named entities in text
and classifying them into one of the entity

types. The types typically include persons,
locations, organizations, temporal expressions,
phone numbers, but sometimes also product
names, brands, diagnoses, drug types, or pub-



Quality of Word Vectors and its Impact on Named Entity Recognition in Czech 155

lishers (Goyal et al., 2018; Nadeau and Sekine,
2007).

Named entities can be extracted using several
approaches. The knowledge-based, also known as
rule-based approach relies on the availability of
various lexicons and domain-specific knowledge
(Yadav and Bethard, 2018). Knowledge-based
systems can be usually easily implemented but
it is difficult to define all necessary rules. The
systems usually have high precision but, on the
other hand, lower recall and fail on unknown
cases.

Machine learning approaches strive to elimi-
nate the problems with hand-crafted rules. The
NER problem is being solved with a model
automatically created by a computer. Systems
using supervised learning require annotated
corpora (a text with marked entities) and
a learning algorithm that can automatically
extract the rules for detecting entities. Systems
based on unsupervised learning (no labeled
data is available) require only some syntactic
patterns to identify candidates for entities that
can be further evaluated and disambiguated
(Etzioni et al., 2005; Nadeau et al., 2006).

The crucial aspect of learning a NER model
is the selection of the appropriate features.
Modern state-of-the-art NER approaches avoid

using hand-crafted features and rely on feature-
inferring neural network systems based on word
embeddings. These systems often outperform
the systems using engineered features, even
when they have access to domain-specific rules
or lexicons (Yadav and Bethard, 2018).

A lot of research concentrates on massively
used languages, like English, German, or Span-
ish and there have been many approaches to
named entity recognition developed. For the
Czech language, the situation is quite different
as there is a delay in current research. There
exist only a few named entity recognizers and
not much attention has been devoted to the
optimization of all steps of the NER procedure.
A typical example is a process of preparing
word vectors to be used in the NER task.
The goal of the paper is thus to analyze the
impact of different aspects related to word
embeddings on the process and results of the
named entity recognition task in Czech. The
goal is not to achieve the best results and
beat the current state-of-the-art approaches,
which usually requires using other language-
dependent resources, but to discover how dif-
ferent algorithms, their parameters, or the size
and quality of corpora used for training can
influence the result.

2 CURRENT STATE

The methods of NER often employ statis-
tics (e.g., Conditional Random Fields – see
Tkachenko and Simanovsky, 2012; Hidden
Markov Models – see Zhou and Su, 2002),
classification algorithms (e.g., support vector
machine – see Li et al., 2005), or neural
approaches (Collobert et al., 2011). In the past,
classical machine learning models like SVM or
logistic regression strongly relying on feature
engineering were popular in NER (Goldberg,
2016). The features generally belonging to one
of the three categories – document, corpus, and
word-based features (Goyal et al., 2018) usually
include, e.g., word length, capitalization, pres-
ence in an external list, part-of-speech, position
in a sentence, the occurrence of a period
or hyphen, suffixes, prefixes, or orthographic

features (Zhou and Su, 2002; Tkachenko and
Simanovsky, 2012).

Later, it has been found that neural models
(especially deep neural models) able to learn
important features directly from texts could
be used also for NER. A prevalent approach
is now based on neural networks with archi-
tectures such as bidirectional or convolutional
LSTM (Lample et al., 2016; Chiu and Nichols,
2016; Rudra Murthy and Bhattacharyya, 2018;
Chen et al., 2018). Such architectures that
are suitable for processing sequential data as
they have a form of memory are successfully
used also in other natural language processing
tasks (Mikolov et al., 2015). After a pioneering
publication on word vectors training using the
word2vec algorithm (Mikolov et al., 2013a), the



156 František Dařena and Martin Süss

NER research was aimed at using word vectors
also in NER in many natural languages (Nguyen
et al., 2019; El Bazi and Laachfoubi, 2019; Seok
et al., 2016). Word vectors (Collobert et al.,
2011), which are vectors representing individual
words, are able to capture the syntactic as well
as semantic regularities of a language which has
been found to be beneficial in many NLP tasks.

In order to learn word vectors using a
neural model, texts need to be converted
to a structured representation (vectors) first.
The procedure can generally include several
preprocessing steps like, e.g., text cleaning,
white space removal, case folding, spelling
errors corrections, abbreviations expanding,
stemming, stop words removal, or negation
handling (Dařena, 2019). For word embeddings
training, some preprocessing can be applied
too (Li et al., 2017; Leeuwenberg et al., 2016)
which can have an impact on the context of
the words, the number of unique words, and
global word frequencies. Subsequently, one-hot
encoded vectors (vector where only one out of
its units is 1 and all others are 0) that act as
the inputs and outputs of the neural models
are derived (Rong, 2014). Various sets of word
embeddings trained on different corpora (e.g.,
Wikipedia) are instantly available. Different
algorithms can be also used to train their own
set of embeddings, that are suitable for general
use or specific task. The algorithms have various
parameters that need to be set with respect
to a given task. Current approaches to NER
using word embeddings, however, often use the
default parameters settings, and the impact of
alternative settings is not evaluated.

Besides the core features derived from the
text in a neural model, additional language-
dependent (presence in a list of cities, countries,
first and last names, days of a week, currencies,
part-of-speech, singular/plural) or language-
independent features (context, position, word
length, fixed length prefix/suffix, presence of a
hyphen) can be on the input of a NER system
(Chiu and Nichols, 2016).

2.1 NER for the Czech Language

Ševčíková et al. (2007) presented the first NER
system for the Czech language using decision
trees analyzing handcrafted features to detect
and classify entities in text. Kravalová and
Žabokrtský (2009) implemented another system
using SVM for classification. Král (2011) imple-
mented a NER system for a specific purpose
(searching the Czech press agency database)
and demonstrated that feature selection plays
a crucial role in designing a NER system.
He proved that language independent features
are more important than the dependent ones.
Konkol and Konopík (2011) created a NER
system using the Maximum Entropy algorithm
which used semantic spaces that were created
using the COALS method (Rohde et al., 2004).
It is the first work that treated words as vectors
in a multidimensional space. Another system
employing Conditional Random Fields using
different features and resources was presented
by Konkol and Konopík (2013). In the same
year, Straková et al. (2013) published another
NER system for Czech using Maximum Entropy
Markov Model.

The first system that employed word vec-
tors trained using word2vec was presented by
Demir and Özgür (2014). Although it used
only language independent features it outper-
formed all existing NER systems for Czech.
A better performance was later achieved by
Straková et al. (2016) who use a neural network
with gated recurrent units together with word
vectors representing original or lemmatized
words, part-of-speech tags, prefixes, suffixes,
or vector representations of characters. The
word vectors in both systems were trained
using word2vec with the skipgram architecture.
The best performance was brought by Konopík
and Pražák (2018). They use a deep neural
model with LSTM layers encoding character
sequences and word sequences together with a
wider context information obtained from Latent
Dirichlet Allocation. The word sequence layer
was using pretrained GloVe and fastText word
vectors.



Quality of Word Vectors and its Impact on Named Entity Recognition in Czech 157

The systems using word vectors were able to
improve the performance expressed by the F1-
measure by a few percent. At the same time,
the features did not need to be engineered
manually because many useful properties and
relations were encoded in the vectors. Most of
the systems, however, relied on pretrained word
vectors or created the vectors using default
parameters of the algorithms.

2.2 Learning Word Embeddings

In machine learning, there is a general problem
with choosing the right set of features for the
given task (Blum and Langley, 1997). In natural
language processing, there is an additional
problem related to the classical representation
of features derived from texts (known as bag-
of-words). In this model, each word or another
feature is represented by one dimension in
a multidimensional space for representing the
documents. Such a value does not enable
sharing some information across features and
is thus is independent of the others.

To solve the problem with no similarity
among features, it would be possible to add
other information to the existing features to
better capture the context in which they ap-
pear. This, however, increases the number of
dimensions in the input space and requires the
combination of possible feature components to
be carefully selected (Goldberg, 2016).

Some of the modern representations of texts
use more dimensions to represent each word or
feature. The words are embedded in a continu-
ous multidimensional space that has typically
a few hundred dimensions so we talk about
word embeddings. Finding suitable values of
the vector elements is based on the hypothesis
stating that words in similar contexts have
similar meanings (Levy and Goldberg, 2014).
Because similar words (e.g., synonyms) share
some information, the values of their vector
elements should be similar and the vectors are
located close to each other in the multidimen-
sional space.

Popular approaches leading to generating
such vectors include models using global matrix
factorization like Latent Semantic Analysis

(LSA) or Latent Dirichlet Allocation (LDA)
and models learned by neural networks using
a small context window (where word2vec is
probably the most popular), see Mikolov et al.
(2013a), Pennington et al. (2014). Supervised
methods create embeddings that are trained
towards the given goal and can capture in-
formation that is relevant for the task. They,
however, require annotated data for the specific
task. Unsupervised methods do not require
annotated data. Their only goal is to compute
embeddings that are usually learned in the
task of predicting a word given its context
or deciding, whether a word can belong to a
context given examples of real and randomly
created word-context pairs (Goldberg, 2016).
Such embeddings capture general syntactic and
semantic relationships and can be applied in a
wide variety of tasks. When there is not enough
data for domain-specific embeddings training
available a model created on a general corpus
can be adjusted using a smaller amount of
domain-specific data (Yen et al., 2017).

Famous methods that can be used to compute
word embeddings include:
• word2vec – a family of methods proposed

by Mikolov et al. (2013a) that strongly
attracted the NLP community to neural
language models. The method predicts a
word based on its context (the Continuous
bag-of-words or CBOW approach) or the
context for a word (the skipgram approach).
Word2vec tried to eliminate the problems
with the computational complexity of the
existing neural language models. In the
training phase, a neural network uses a
linear activation function instead of the
sigmoid function, which is typical for a
multilayer perceptron, and the logarithm of
the probability of predicting the word or its
context is being maximized.

• GloVe – a model uses information about
global co-occurrences of words. Word vec-
tors are used in the task of predicting the
probability with which two words co-occur.
The probabilities can be calculated from a
term-term matrix created from a corpus.
The prediction is made by a function that
takes word vectors as the input. The word



158 František Dařena and Martin Süss

vectors are calculated in the process of
word co-occurrence matrix factorization us-
ing stochastic gradient descent (Pennington
et al., 2014).

• fastText – a model derived from word2vec,
treats each word as a bag of character n-
grams (which enables considering sub-word
information very important for morpholog-
ically rich languages) where the vectors are
associated at the n-gram level. The vector
for a word is calculated as the sum of n-gram
vectors. This enables, compared to word2vec
and GloVe, creating vectors for words that
are not in the training data (Bojanowski et
al., 2017).

The skipgram technique in both word2vec
and fastText algorithms can better capture
semantic regularities of words. On the other
hand, the CBOW approach captures syntactic
regularities better (Mikolov et al., 2013b).
The methods of embeddings training require

several parameters to be set – the number
of vector dimensions, definition of the context
(size and position), maximal number of unique
words, minimal frequency of a word, number
of training epochs, etc. which can significantly
influence the quality of the learned vectors
(Levy et al., 2015).

3 DATA AND METHODS

The quality of word vectors depends on the
corpus on which they are trained. Generally,
the more data is available, the better. However,
the number of unique tokens, amount of errors,
writing style, domain to which the texts are
related etc. play a significant role also in the
NER task. Here, what are an entity and its
type often depends on the domain (Kulkarni
et al., 2016). The number of unique tokens
is especially high for morphologically rich lan-
guages where different forms of a word have
an impact on the number of global occurrences
as well as the number of combinations with
other words. Here, normalization techniques,
like stemming, lemmatization, case folding, or
stop words removal can be considered (Levy et
al., 2015).

3.1 Data

For the Czech language, no corpora suitable
for the NER task existed before 2007 when the
Czech Named Entity Corpus (CNEC) 1.0 was
released (Ševčíková et al., 2007). The corpus
was later extended, simplified, and transformed
to a format similar to the one used by the
SIGNLL Conference on Computational Natural
Language Learning (CoNLL) and evolved to
so-called Extended-CNEC corpus (Konkol and
Konopík, 2013). The corpus in version 2.0

defining seven most commonly used entity types
(numbers in addresses, geographical names,
institution names, media names, artifact names,
personal names, and time expressions) was used
for training our NER system. This corpus has
also been used by most of the other researchers
so a comparison with previous research is
possible.

To evaluate the impact of corpus size and
quality, which are the factors influencing the
quality of word vectors (Levy et al., 2015)
used in the NER system, different corpora
were used to learn word vectors. CWC-11 is
a Czech corpus based on selected newspaper
articles, blogs, and discussions on the Czech web
(Spoustová and Spousta, 2012). CoNLL-2017
is a corpus released for the CoNLL conference
in 2017. It contains also documents in Czech,
especially from Wikipedia and other Internet
sources (Zeman et al., 2018). CZES is a Czech
corpus containing data from news webs from the
years 1995–1998 and 2002 (Masaryk University,
2011). SYN-2015 is a part of the SYN corpus
consisting of journalistic, technical, and fiction
papers from the years 2010–2014 (Křen et
al., 2016). EuroParl is a relatively small and
specialized corpus containing texts related to
the European parliament agenda in the years
1996–2011. Detailed characteristics of the data
collections can be found in Tab. 1.



Quality of Word Vectors and its Impact on Named Entity Recognition in Czech 159

Tab. 1: Selected corpora containing open Czech text

Corpus Number of words Number of unique tokens
CoNLL-2017 (Czech part) 1.62 billion 21.5 million
CWC-2011 – articles 628 million 1.8 million
CZES 497 million 3.5 million
EuroParl (Czech part) 13 million 304 thousand
Czech Wikipedia extraction 134 million 2.6 million
SYN-2015 121 million 1.4 million
Extended CNEC 2.0 199 thousand 35 thousand

The CoNLL-2017 corpus is the largest but
probably of the lowest quality, according to
the number of unique tokens. The CWC-2011,
CZES, and SYN-2015 corpora contain a lower
number of unique tokens so the tokens should
appear with higher frequencies. The difference
between these corpora is mainly in their size.
The EuroParl corpus contains data from a
specific domain and is relatively small. Because
the CNEC and EuroParl corpora are rather
small, the neural network implementing NER is
allowed to update the word vectors (the vectors
are trainable). Although this is usually not use-
ful, updating word vectors with respect to a spe-
cific task might be a good option when the word
vectors are not good enough (Hope et al., 2017).
This fine-tuning for each task can also give an
extra boost to the NER system performance
(Collobert et al., 2011). When the other corpora
are used to train word vectors, the vectors are
fixed during the NER system training.

The Extended CNEC 2.0 corpus, which is
primarily used to train the NER system, was
used as one of the corpora for learning word
vectors. The goal was to find out whether it
is beneficial to compute word vectors from the
corpus that is also used to train the system for
the NER task when there is only a small corpus
for training a NER system (with labeled named
entities) available as it is expected that different
NLP tasks employ the linguistic information
related with other tasks (Güngör et al., 2018).

Texts from all sources were lowercased. The
reason is that some of the available texts
were already in lower case so we wanted to
have all of them in the same form. All non-
alphanumeric characters and words with less
than 5 occurrences were removed as well.

3.2 The NER System

The NER system implemented to evaluate the
impact of different properties of word vectors
and parameters of their learning were based on
the work of Žukov-Gregorič et al. (2018) who
achieved state-of-the-art results on the CoNLL
NER dataset. The input to the system is a
sequence of word vectors and the output is an
entity type label (including a label for words
that are not entities). The function mapping
inputs (a sequence of word vectors) to outputs
(a sequence of entity type labels) is a neural
network.

The first layer of the network accepts word
vectors and passes them to the hidden layer.
The hidden layer uses bidirectional LSTM
units. The output layer converts the signal
from the hidden layer using hierarchical softmax
to predict an entity type for the given input.
As a stochastic gradient-based optimization
algorithm, Adam (Kingma and Ba, 2014) was
used to learn the weights of the network.
Various hyperparameters of the network were
determined experimentally, see below.

Initially, the NER system used pre-trained
word vectors as input. The vectors were learned
on the Czech part of the CoNLL-2017 collection
with word2vec using the skipgram architecture,
with context window of size 10, and word
vectors having 100 dimensions (Fares et al.,
2017).

The values of the hyperparameters (Feurer
and Hutter, 2019) of the NER system can
significantly influence the results. Because the
best possible achievement in the NER task was
not the main goal of the research, only an
acceptably good setting was found. Initially,



160 František Dařena and Martin Süss

the hyperparameters were set to the values
typical for existing research (Žukov-Gregorič et
al., 2018). The values were then changed (in
both directions) as long as the performance
(measured by the F1-measure) of the NER
system was improving.

The suitable hyperparameter values were
found in the order as they appear in the list
below. The suitable number of epochs was
found as the average number of epochs that
were needed to achieve the best result for the
given combination of hyperparameters (this was
12 most of the time).

The best results were achieved with the
following hyperparameter setting:
• dropout probability (the probability that a

neuron will be randomly turned off): 0.7;
• learning rate (influencing how fast are neu-

ron weights changing): 0.02;
• batch size (the number of instances used

for network parameters adjustment in an
iteration): 32;

• the number of hidden layer neurons: 200;
• the number of epochs (the number of passes

through the training data set): 12.
With this setting, the system was able to

achieve the value 0.6816 of the F1-measure on
the CONLL test set without optimizing the
process word vectors creation.

3.3 Changing Parameters During
Word Vectors Training

There are a few aspects of word vectors training.
They are evaluated in isolation in a sequence
of experiments. In one phase, one parameter is
investigated and its suitable value determined.
The following phase works with this value and
focuses on another parameter.

The corpora described in Section 3.1 were
used to learn word vectors to evaluate the
impact of different corpora sizes size and
quality. The word2vec algorithm using the skip-
gram architecture, context windows of size 10,
hierarchical softmax, minimal token frequency,
and the number of epochs equal to 5 was
used to learn vectors with 100 dimensions. The
skipgram architecture is suitable for most of the
NLP tasks, is often used by other authors, and

has low computational complexity (Levy et al.,
2015).

Another important parameter is the size
of vectors. Generally, the bigger the vectors
are, the more relations between words can be
captured (Pennington et al., 2014). This was,
however, demonstrated on the word analogy
task and not on the NER task. The vector size
is also related to the corpus size. The bigger
the corpus is, the more words and relations can
be contained there. The experiments, therefore,
examined different corpus and vector sizes.
Most of the previous works used word vectors
with 100 to 300 values. We, therefore, examined
50, 100, 200, 300, and 400 dimensions which
cover the mentioned interval as well as close
values outside it.

Some of the commonly used text prepro-
cessing techniques, namely lemmatization, case
folding, stop words removal, and their combi-
nations were applied to texts before learning
word vectors (lemmatization and case folding
should be then applied to training data for
the NER system too). Lemmatization and case
folding belonging to normalization techniques
decrease the number of unique tokens and
increase the global frequencies of the tokens.
This might be important especially for small
corpora containing texts in a morphologically
rich language, like Czech.

Three algorithms, namely word2vec (using
the CBOW and skipgram architectures), GloVe,
and fastText (using the CBOW and skipgram
architectures) were studied. In the experiments,
different context window sizes (5, 10, and
15 words) at a fixed number of epochs (5)
were examined. Subsequently, 1, 10, and 15
epochs (5 epochs were already included in
the experiments with different context window
sizes) of training using 10 words context window
were applied to create word vectors.

For the best settings of word2vec and fast-
Text algorithms, the output layer function was
changed from softmax to negative sampling
with 5 or 10 negative samples. In the word2vec
CBOW method, summation was used together
with averaging the vectors. Different n-gram
sizes were studied for the fastText algorithm.
Similarly to Bojanowski et al. (2017), the



Quality of Word Vectors and its Impact on Named Entity Recognition in Czech 161

minimal n-gram size was 2 or 3 and the maximal
size 4 or 6. In the GloVe algorithm, different
exponent values in the weighting function were
used.

The following list summarizes the inves-
tigated aspects of individual techniques and
algorithms during word vectors learning:
• all algorithms:

– corpus: different corpora from Tab. 1;
– number of dimensions: 50, 100, 200, 300,

400;
– context window size: 5, 10, 15;
– preprocessing techniques: lemmatiza-

tion, case folding, stop words removal;
– number of training epochs: 1, 5, 10, 15;

• wor2vec and fastText:
– architecture: skipgram or CBOW;
– last layer function: hierarchical softmax

or negative sampling (5 or 10 negative
samples);

• wor2vec:
– CBOW aggregation: sum or average;

• fastText:
– character n-gram size: 2 to 6;

• GloVe:
– value of exponent α in the weighting

function in the cost function: 0.75, 0.5,
0.25.

The quality of word vectors can be measured
in several ways. One of the popular approaches
is the analogy task (Mikolov et al., 2013b).
However, good results in this task do not have
to automatically lead to good results in the
NER task. The performance of NER systems
is usually measured using precision and recall.
The precision is calculated as the ratio of pieces
of a text that were correctly labeled as an entity
and the number of pieces of a text that were
labeled as an entity. The recall is defined as the
ratio of entities in the text that were labeled
as entities and the total number of entities
in the text. These measures are calculated for
each category of entities to be identified and
can be further combined to the F1-measure
which is a harmonic mean of the precision and
recall (Yadav and Bethard, 2018). The impact
of changing different parameters during the
investigation was thus measured by the F1-
measure.

4 RESULTS

This section provides the results from the
investigation of the impact of different aspects
of word vectors learning. The aspects follow the
procedure described in Section 3.3.

4.1 Corpus Characteristics

First, the suitability of different corpora for
creating word vectors was evaluated. The im-
provement against the baseline when no word
vectors were used (the input contained just
word identifiers) can be found in Tab. 2.

The CoNLL-2017, CZES, and CWC-2011
corpora has brought the highest improvements
of the F1-measure (more than 15%) in the
NER task even without focusing on the opti-
mization of the parameters of the algorithms
used. Among these three, CoNLL-2017 has
brought the least improvement despite having
the nighest number of tokens. This means that

not only the quantity, but also quality of the
corpus is important.

Tab. 2: The values of the F1-measure obtained by the
NER system when using different corpora for word
embeddings training

Corpus F1-measure [%]
No (baseline) 49.83
EuroParl (Czech part) 52.09
Text from Extended CNEC 2.0 52.54
Czech Wikipedia extraction 56.54
SYN-2015 61.31
CoNLL-2017 (Czech part) 64.60
CZES 65.28
CWC-2011 – articles 66.31

None from the corpora used in word vectors
training was able to improve the NER outcomes
so they would outperform the result achieved
when training the NER system with vectors



162 František Dařena and Martin Süss

pretrained on the Czech part of the CoNLL-
2017 corpus, see Section 3.2 for details (the
achieved F1-measure was 0.68). This means
that it makes sense to focus on the details of
the algorithms of word vectors training.

The best results were achieved with the
CWC-2011 corpus (a large corpus with more
than 600 million words) which is used in the
following experiments.

4.2 Corpus Size and Word Vectors
Length

The next experiment focused on determining
how corpus size and word vectors length are
related and how they influence the results
of NER. The outcome of this experiment is
summarized in Tab. 3.

Tab. 3: The values of the F1-measure of the NER system
when using different numbers of word vectors dimensions
and sizes of the CWC-2011 corpus (the baseline is
emphasized)

Number of Relative corpus size
dimensions 1% 10% 50% 100%
50 53.84 59.14 63.98 62.55
100 54.56 61.14 64.83 66.31
200 55.17 62.79 66.35 67.29
300 56.63 63.78 67.93 67.95
400 55.70 65.51 67.68 68.33

Most significant differences can be seen
between low- and high-dimensional vectors
learned on the largest corpus where smaller
vectors were not sufficient for encoding all
relations between words. Increasing the number
of dimensions lead to improvements even for
smaller corpus portions. When the dimension-
ality was around 300 or 400 the results stopped
improving, or they even degraded. Improve-
ments were also positively related to corpus size.
While the improvements between using 1 and
50% of the corpus were around 10% in the F1-
measure, the differences between using 50% of
the corpus and the whole corpus were marginal.
Finding a suitable amount of data from which
the results stop improving had thus a positive
effect on computational complexity. For Czech,
corpora containing hundreds of million tokens
seem to be sufficient.

In the subsequent experiments, the number of
dimensions was 300 because it enabled achiev-
ing the best results. Further experiments that
did not change corpus size worked with 50%
of texts from CWC-2011. Both decisions did
not negatively influence the performance of the
NER system and had favorable computational
complexity and memory demands.

4.3 Text Preprocessing Techniques

The application of normalization techniques
and stop words removal lead to a decreased
number of unique tokens which not only
affected word vectors training but also the
number of out of vocabulary words (words that
are recognized in the testing phase but are
unknown in the training phase) in the NER
system training. The effects of the application
of these techniques and their combinations can
be found in Tab. 4. Based on the results, it can
be noted that using normalization (here, the
largest effect has lemmatization) had a positive
impact especially for smaller corpora used for
word vectors training. For larger text collec-
tions, especially with texts of higher quality,
these techniques or their combinations were
not useful. Of course, the same preprocessing
techniques were applied to the texts used for the
NER system training. Lowercasing is considered
as a baseline since all texts were lowercased
for the initial experiments (an explanation is
in Section 3.1).

4.4 Algorithms and Their
Parameters

Until now, only the word2vec algorithm was
used to train word vectors. In the following
step, other algorithms and their parameters
were examined. Two parameters were relevant
for all three algorithms (word2vec, GloVe,
and fastText): context window size and the
number of training epochs. The detailed results
obtained for different parameter values can be
found in Tab. 5. The table contains the values
of the F1-measure for different context window
sizes for a fixed number of training epochs, as
well as the values of the F1-measure for different



Quality of Word Vectors and its Impact on Named Entity Recognition in Czech 163

Tab. 4: The values of the F1-measure achieved by the NER system and the number of out of vocabulary (OOV) words
from 51,092 when using different portions from the CWC-2011 corpus and preprocessing techniques when creating word
vectors (LC = lower case, LM = lemmatization, SW = stop words removal)

F1-measure [%] Number of OOV words
Text preprocessing Relative corpus size Relative corpus size
technique 50% 10% 1% 50% 10% 1%
No 68.70 65.94 56.96 4923 8982 21214
LC (baseline) 67.93 63.78 56.63 4173 7652 18665
LM 67.33 66.35 61.58 2744 4576 10699
SW 67.22 62.56 53.81 5367 9426 21645
LC + LM 66.81 66.22 60.80 2792 4628 10624
LC + SW 65.43 62.61 53.96 4617 8096 19107
LM + SW 68.27 64.38 58.25 2811 4662 10827
LC + LM + SW 66.85 63.23 56.39 2839 4701 10744

numbers of training epochs for a fixed context
window size.

It can be seen that fastText dominated in all
these experiments. Also the skipgram technique
for both word2vec and fastText has brought
better results than CBOW, which means that
semantic similarity is more important than
syntactic one (Mikolov et al., 2013b).

Tab. 5: The values of the F1-measure when using different
algorithms and their parameters (context window size,
number of training epochs) for word vectors training (the
baseline is emphasized)

Context window size
(training epochs = 5)

Algorithm 5 10 15
word2vec (CBOW) 64.58 62.69 60.53
word2vec (skipgram) 69.06 68.70 67.99
GloVe 63.90 64.46 64.54
fastText (CBOW) 66.01 63.91 64.39
fastText (skipgram) 72.47 71.50 72.44

Training epochs
(window size = 10)

Algorithm 1 5 10 15
word2vec (CBOW) 61.46 62.69 60.65 61.18
word2vec (skipgram) 68.25 68.70 68.60 69.05
GloVe 60.43 64.46 63.04 65.00
fastText (CBOW) 64.33 63.91 63.62 63.62
fastText (skipgram) 71.72 71.50 69.36 70.48

A context window size had a larger impact
on the results when the CBOW technique was
used and only a negligible impact when using
the skipgram technique. The number of training

epochs seems to have no significant impact on
the results. Five epochs of training lead to
the best results in most of the experiments.
The GloVe algorithm did not reach results
comparable to word2vec or fastText even when
changing the exponent α in the weighting
function in the cost function from the default
value 0.75 to 0.5 or 0.25.

Both word2vec and fastText using skipgram
can use different functions of the output layer
of the neural network – hierarchical softmax
or negative sampling. When using 5 or 10
negative samples, no improvement was observed
for fastText. On the other hand, five negative
samples increased the value of the F1-measure
from 69.06% to 70.37% for word2vec. When
using the CBOW technique, the sum instead
of the average of the output vectors improved
the value of the F1-measure from 64.58% to
66.62% for word2vec. For fastText, the value
of the F1-measure even decreased. In both
cases, the results were worse than when using
the skipgram technique. When changing the
minimal and maximal n-gram sizes for fastText
(minimal = 2 or 3, maximal = 4 or 6), no
improvements were found compared to the
default setting (minimal = 3, maximal = 6).

4.5 Best Algorithms Settings

After a series of experiments focusing on differ-
ent aspects of word vectors preparation for the
NER task were conducted, some recommenda-
tion for the settings have been identified:



164 František Dařena and Martin Süss

Tab. 6: The values of the F1-measure for the NER system using recommended settings for different CWC-2011 corpus
portions (the baseline is emphasized)

No lemmatization With lemmatization
Relative corpus size Relative corpus size

Algorithm 100% 50% 10% 1% 10% 1%
word2vec 70.66 70.37 66.02 53.78 66.89 59.11
GloVe 63.54 65.00 60.12 52.62 58.54 53.44
fastText 71.69 72.47 71.12 66.51 70.34 66.42

Tab. 7: Detailed NER performance measures for the best word vectors preparation settings

Entity type Precision [%] Recall [%] F1-measure [%] Recognized entities Number of entities
Numbers and addresses 90.38 85.45 87.85 52 55
Geographical names 73.48 76.98 75.19 396 378
Institutions 59.83 65.74 62.65 356 324
Media 66.67 58.33 62.22 42 48
Artifacts 47.78 47.91 47.84 383 382
Persons 77.49 86.04 81.54 533 480
Temporal expressions 89.63 91.58 90.59 376 368
Total 70.72 74.30 72.47 2138 2035

• using the CWC-2011 corpus for training (of
course, for a specific domain, other corpora
might be more suitable; however, the size
and quality need to be generally considered);

• training word vectors with 300 dimensions;
• using lemmatization for a small amount

of text for training (i.e., 1 or 10% of the
corpus);

• word2vec settings: skipgram, the context
window size = 5, the number of training
epochs = 5, negative sampling with 5
negative samples;

• fastText settings: skipgram, the context
window size = 5, the number of training
epochs = 5, hierarchical softmax as the
output layer function, minimal n-gram size
= 3, maximal n-gram size = 6).

The results achieved with these recommen-
dations are summarized in Tab. 6. We can
see that lemmatization makes sense in the
case that just a small corpus is available for
word vectors training. When more data is used,
lemmatization even worsens the performance
(see the columns 10% in Tab. 6.

The size of the corpus used for training had
the smallest impact on the performance when
using the fastText algorithm. This supports

(Bojanowski et al., 2017) stating that fastText
is able to learn well on smaller corpora. From a
certain size, using additional texts also did not
bring additional improvements in the NER task.
From using 50% of the corpus, word2vec was
able to provide results comparable to fastText
while GloVe was about 5% behind.

Using fastText with other recommended set-
tings of the process and fastText algorithm
is therefore the best approach for preparing
word vectors for the NER task for the Czech
language. The NER system using word vectors
prepared in this way achieved 72.47% of the F1-
measure (compared to 49.83% when not using
word vectors and 68.16% when using setting
typically used by other authors).

The detailed performance for individual
named entity categories can be found in
Tab. 7. The best performance was achieved
for temporal expressions (usually the names of
days or months) that had very similar vector
representations. On the other hand, artifact
names, like units of measure, currencies, norms,
or product names, were recognized with the
worst performance as they cover a very wide
variety of expressions. These names were often
composed of more tokens and the NER system
did not have to recognize all of them correctly.



Quality of Word Vectors and its Impact on Named Entity Recognition in Czech 165

Compared to word2vec, fastText was able to
better recognize numbers and addresses (the
F1-measure for fastText was 87.85% compared
70.91% for word2vec). It is complicated to have
a separate word vector for every unique token
for word2vec. On the other hand, fastText

composes word vectors from character n-grams
so, for example, a vector for a number will
be very similar to vectors of other numbers.
A similar situation is in recognizing media
entities, that contain many e-mail addresses.

5 DISCUSSION

To evaluate the impact of different settings
in word vectors training, the results were
compared to the results of other authors that
used a similar approach. This means that
they used a neural model for NER together
with word vectors. The results also needed
to be demonstrated on the Extended CNEC
2.0 corpus while using no additional resources
(e.g., gazetteers, Brown mutual information
bigram clusters, regular expressions) or engi-
neered features (e.g., lemmas, prefixes, affixes,
character n-grams, orthographic features). The
availability of gazetteers or well-engineered
features generally improves the NER system
performance so the results of the other authors,
against which the comparison is made, are not
the best they ever achieved. Not having exactly
the same resources also would not allow a direct
comparison of the results.

Demir and Özgür (2014) use a large Czech
corpus containing 636 million words and 906
thousand unique tokens (the size is similar to
the CWC-2011 corpus), together with word2vec
using the skipgram architecture and the context
window size equal to 5 for training word
vectors having 200 dimensions. Straková et
al. (2016) used the same algorithm applied
to the large SYN corpus for word vectors
training. Tab. 8 summarizes the performance of
the NER system presented in this paper and
the results achieved by other authors where
the results were available. The first number

49.83% represents the value of the F1-measure
achieved by our system when no word vectors
were provided. When word vectors trained
using the baseline method (see Section 4.1)
were used and suitable values of the NER
model hyperparameters were found the value
of the F1-measure increased to 68.16%. When
focusing on the optimization of different aspects
of word vectors training, the value additionally
increased to 72.47%.

Tab. 8: Comparison of the values of the F1-measure
achieved in this paper with other research

Method F1-measure [%]
This paper – no word vectors 49.83
This paper – word vectors,
best hyperparameters 68.16

This paper – best setting
for fastText 72.47

Demir and Özgür (2014) 64.72
Straková et al. (2016) 63.91

It is obvious that focusing on the process of
word vectors preparation can bring a significant
improvement to the NER system performance.
This is demonstrated by the comparison to the
results of other researchers that did not focus on
the optimization of word vectors training. Our
results are compared to the outcomes achieved
without additional language independent and
dependent features and other modifications of
the NER algorithm.



166 František Dařena and Martin Süss

6 CONCLUSION

The research focused on named entity recogni-
tion in Czech where the process of preparing the
data for training a NER model using modern
text representations has not been investigated.
The main emphasis is put on the phase of
preparing word vectors for training a machine
learning-based NER system.

First, the NER system inspired by the state-
of-art approach was created. The input to the
system was a sequence of word vectors and the
output was an entity type label. The function
mapping inputs (a sequence of word vectors)
to outputs (a sequence of entity type labels)
was a neural network. The hidden layer used
bidirectional LSTM units. The output layer
converted the signal from the hidden layer using
hierarchical softmax to predict an entity type.
As a stochastic gradient-based optimization
algorithm Adam was used to learn the weights
of the network.

Subsequently, attention was paid to various
aspects of word vectors preparation. The suit-
able settings in different steps were determined
in extensive experiments and included the used
corpus, number of word vectors dimensions,
used text preprocessing techniques, context
window size and number of training epochs
for word vectors training and other algorithm-
specific parameters. Besides suitable values for
the parameters, it has been found that a
sufficiently large corpus of good quality needs
to be used and the number of word vectors
dimensions needs to be chosen so enough
relations between words can be encoded.
It was demonstrated that focusing on the

process of word vectors preparation can bring
a significant improvement of the NER system
performance even without using additional lan-
guage independent and dependent resources.

7 REFERENCES

Blum, A. L. and Langley, P. 1997. Selection of
Relevant Features and Examples in Machine
Learning. Artificial Intelligence, 97 (1–2), 245–271.
DOI: 10.1016/S0004-3702(97)00063-5.

Bojanowski, P., Grave, E., Joulin, A. and
Mikolov, T. 2017. Enriching Word Vectors
with Subword Information. Transactions of the
Association for Computational Linguistics, 5,
135–146. DOI: 10.1162/tacl_a_00051.

Chen, G., Liu, T., Zhang, D., Yu, B. and Wang, B.
2018. Complex Named Entity Recognition via
Deep Multi-Task Learning from Scratch. In
Zhang, M., Ng, V., Zhao, D., Li, S. and
Zan, H. (eds.). Natural Language Processing
and Chinese Computing: Proceedings, Part I,
pp. 221–233. Springer International Publishing,
Cham. DOI: 10.1007/978-3-319-99495-6_19.

Chiu, J. P. C. and Nichols, E. 2016. Named
Entity Recognition with Bidirectional LSTM-
CNNs. Transactions of the Association
for Computational Linguistics, 4, 357–370.
DOI: 10.1162/tacl_a_00104.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K. and Kuksa, P. 2011. Natural
Language Processing (Almost) from Scratch.
Journal of Machine Learning Research, 12,
2493–2537.

Dařena, F. 2019. VecText: Converting Documents
to Vectors. IAENG International Journal of
Computer Science, 46 (2), 170–177.

Demir, H. and Özgür, A. 2014. Improving Named
Entity Recognition for Morphologically Rich
Languages Using Word Embeddings. In 2014
13th International Conference on Machine
Learning and Applications, pp. 117–122.
DOI: 10.1109/ICMLA.2014.24.

El Bazi, I. and Laachfoubi, N. 2019. Arabic
Named Entity Recognition Using Deep Learning
Approach. International Journal of Electrical
and Computer Engineering, 9 (3), 2025–2032.
DOI: 10.11591/ijece.v9i3.pp2025-2032.

Etzioni, O., Cafarella, M., Downey, D., Popescu,
A.-M., Shaked, T., Soderland, S., Weld, D. S.
and Yates, A. 2005. Unsupervised Named-Entity
Extraction from the Web: An Experimental
Study. Artificial Intelligence, 165 (1), 91–134.
DOI: 10.1016/j.artint.2005.03.001.



Quality of Word Vectors and its Impact on Named Entity Recognition in Czech 167

Fares, M., Kutuzov, A., Oepen, S. and Velldal, E.
2017. Word Vectors, Reuse, and Replicability:
Towards a Community Repository of Large-Text
Resources. In Tiedemann, J. (ed.). Proceedings
of the 21st Nordic Conference on Computational
Linguistics, pp. 271–276.

Feurer, M. and Hutter, F. 2019. Hyperparameter
Optimization. In Hutter, F., Kotthoff, L.
and Vanschoren, J. (eds.). Automated Machine
Learning: Methods, Systems, Challenges, pp. 3–33.
Springer International Publishing, Cham.

Goldberg, Y. 2016. A Primer on Neural Network
Models for Natural Language Processing. Journal
of Artificial Intelligence Research, 57, 345–420.

Goyal, A., Gupta, V. and Kumar, M. 2018.
Recent Named Entity Recognition and
Classification Techniques: A Systematic
Review. Computer Science Review, 29, 21–43.
DOI: 10.1016/j.cosrev.2018.06.001.

Güngör, O., Üsküdarlı, S. and Güngör, T. 2018.
Improving Named Entity Recognition by Jointly
Learning to Disambiguate Morphological Tags. In
Proceedings of the 27th International Conference
on Computational Linguistics, Association for
Computational Linguistics, pp. 2082–2092.

Hope, T., Resheff, Y. S. and Lieder, I. 2017.
Learning TensorFlow: A Guide to Building Deep
Learning Systems. O’Reilly Media.

Kingma, D. P. and Ba, J. L. 2015. Adam: A Method
for Stochastic Optimization. In 3rd International
Conference for Learning Representations.
CoRR: abs/1412.6980.

Konkol, M. and Konopík, M. 2011. Maximum
Entropy Named Entity Recognition for Czech
Language. In Habernal, I. and Matoušek, V.
(eds.). Text, Speech and Dialogue: Proceedings,
pp. 203–210.

Konkol, M. and Konopík, M. 2013. CRF-Based
Czech Named Entity Recognizer and Consolidation
of Czech NER Research. In Habernal, I. and
Matoušek, V. (eds.). Text, Speech, and Dialogue:
Proceedings, pp. 153–160.

Konopík, M. and Pražák, O. 2018. LDA in
Character-LSTM-CRF Named Entity Recognition.
In Sojka, P., Horák, A., Kopeček, I. and
Pala, K. (eds.). Text, Speech, and Dialogue:
Proceedings, pp. 58–66.

Král, P. 2011. Features for Named Entity
Recognition in Czech Language. In Filipe, J. and
Dietz, J. (eds.). Proceedings of the International
Conference on Knowledge Engineering and
Ontology Development, Vol. 1, pp. 437–441.
DOI: 10.5220/0003660104370441.

Kravalová, J. and Žabokrtský, Z. 2009. Czech
Named Entity Corpus and SVM-Based Recognizer.
In Li, H. and Kumaran, A. (eds). Proceedings of
the 2009 Named Entities Workshop: Shared Task
on Transliteration, pp. 194–201.

Křen, M., Cvrček, V., Čapka, T., Čermáková, A.,
Hnátková, M., Chlumská, L., Kováříková, D.,
Jelínek, T., Petkevič, V., Procházka, P.,
Skoumalová, H., Škrabal, M., Truneček, P.,
Vondřička, P. and Zasina, A. J. 2016. SYN2015:
Representative Corpus of Contemporary Written
Czech. In Calzolari, N., Choukri, K., Declerck,
T., Goggi, S., Grobelnik, M., Maegaard, B.,
Mariani, J., Mazo, H., Moreno, A., Odijk, J.
and Piperidis, S. (eds.). Proceedings of the Tenth
International Conference on Language Resources
and Evaluation, pp. 2522–2528.

Kulkarni, V., Mehdad, Y. and Chevalier, T. 2016.
Domain Adaptation for Named Entity Recognition
in Online Media with Word Embeddings. arXiv.
CoRR: abs/1612.00148.

Lample, G., Ballesteros, M., Subramanian, S.,
Kawakami, K. and Dyer, C. 2016. Neural
Architectures for Named Entity Recognition. In
Knight, K., Nenkova, A. and Rambow, O.
(eds.). Proceedings of the 2016 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pp. 260–270.
DOI: 10.18653/v1/N16-1030.

Leeuwenberg, A., Vela, M., Dehdari, J. and van
Genabith, J. 2016. A Minimally Supervised
Approach for Synonym Extraction with Word
Embeddings. The Prague Bulletin of Mathematical
Linguistics, 105, 111–142.
DOI: 10.1515/pralin-2016-0006.

Levy, O. and Goldberg, Y. 2014. Neural Word
Embedding as Implicit Matrix Factorization. In
Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D. and Weinberger, K. Q. (eds.).
Advances in Neural Information Processing
Systems 27, pp. 2177–2185.

Levy, O., Goldberg, Y. and Dagan, I. 2015.
Improving Distributional Similarity with Lessons
Learned from Word Embeddings. Transactions of
the Association for Computational Linguistics, 3,
211–225. DOI: 10.1162/tacl_a_00134.

Li, Q., Shah, S., Liu, X. and Nourbakhsh, A. 2017.
Data Sets: Word Embeddings Learned from Tweets
and General Data. In Proceedings of the Eleventh
International AAAI Conference on Web and
Social Media, pp. 428–436.



168 František Dařena and Martin Süss

Li, Y., Bontcheva, K. and Cunningham, H. 2005.
SVM Based Learning System for Information
Extraction. In Winkler, J., Niranjan, M. and
Lawrence, N. (eds.). Deterministic and Statistical
Methods in Machine Learning, pp. 319–339.
DOI: 10.1007/11559887_19.

Masaryk University, NLP Centre. 2011. czes.
LINDAT/CLARIN Digital Library at the Institute
of Formal and Applied Linguistics [online].
Available at: http://hdl.handle.net/11858/
00-097C-0000-0001-CCCF-C.

Mikolov, T., Chen, K., Corrado, G. S. and
Dean, J. 2013a. Efficient Estimation of Word
Representations in Vector Space. In Proceedings
of the International Conference on Learning
Representations. CoRR: abs/1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.
and Dean, J. 2013b. Distributed Representations
of Words and Phrases and Their Compositionality.
In Burges, C. J. C., Bottou, L., Welling, M.,
Ghahramani, Z., Weinberger, K. O. (eds.).
Proceedings of the 26th International Conference
on Neural Information Processing Systems, Vol. 2,
pp. 3111–3119.

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M.
and Ranzato, M. 2015. Learning Longer Memory
in Recurrent Neural Networks. In 3rd International
Conference on Learning Representations.
CoRR: abs/1412.7753.

Nadeau, D. and Sekine, S. 2007. A Survey of
Named Entity Recognition and Classification.
Lingvisticæ Investigationes, 30 (1), 3–26.
DOI: 10.1075/li.30.1.03nad.

Nadeau, D., Turney, P. D. and Matwin, S.
2006. Unsupervised Named-Entity Recognition:
Generating Gazetteers and Resolving Ambiguity.
In Lamontagne, L. and Marchand, M. (eds.).
Advances in Artificial Intelligence: Proceedings,
pp. 266–277. DOI: 10.1007/11766247_23.

Nguyen, A.-D., Nguyen, K.-H. and Ngo, V.-V.
2019. Neural Sequence Labeling for Vietnamese
POS Tagging and NER. In Proceedings: 2019
IEEE-RIVF International Conference on
Computing and Communication Technologies.
DOI: 10.1109/RIVF.2019.8713710.

Pennington, J., Socher, R. and Manning, C. D. 2014.
GloVe: Global Vectors for Word Representation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing,
pp. 1532–1543. DOI: 10.3115/v1/D14-1162.

Rohde, D. L. T., Gonnerman, L. M. and Plaut,
D. C. 2004. An Improved Method for Deriving
Word Meaning from Lexical Co-Occurrence.
Cognitive Psychology, 7, 573–605.

Rong, X. 2014. word2vec Parameter Learning
Explained. arXiv. CoRR: abs/1411.2738.

Rudra Murthy, V. and Bhattacharyya, P. 2018.
A Deep Learning Solution to Named Entity
Recognition. In Gelbukh, A. (ed.). Computational
Linguistics and Intelligent Text Processing:
Revised Selected Papers, Part I, pp. 427–438.

Seok, M., Song, H.-J., Park, C.-Y., Kim,
J.-D. and Kim, Y.-S. 2016. Named Entity
Recognition using Word Embedding as a
Feature. International Journal of Software
Engineering and its Applications, 10 (2), 93–104.
DOI: 10.14257/ijseia.2016.10.2.08.

Spoustová, J. and Spousta, M. 2012. A High-Quality
Web Corpus of Czech. In Calzolari, N.,
Choukri, K., Declerck, T., Doğan, M. U.,
Maegaard, B., Mariani, J., Moreno, A.,
Odijk, J. and Piperidis, S. (eds.). Proceedings of
the Eighth International Conference on Language
Resources and Evaluation, pp. 311–315.

Straková, J., Straka, M. and Hajič, J. 2013. A New
State-of-the-Art Czech Named Entity Recognizer.
In Habernal, I. and Matoušek, V. (eds.). Text,
Speech, and Dialogue: Proceedings, pp.6̇8–75.

Straková, J., Straka, M. and Hajič, J. 2016.
Neural Networks for Featureless Named Entity
Recognition in Czech. In Sojka, P., Horák, A.,
Kopeček, I. and Pala, K. (eds.). Text, Speech,
and Dialogue: Proceedings, pp. 173–181.

Ševčíková, M., Žabokrtský, Z. and Krůza, O. 2007.
Named Entities in Czech: Annotating Data and
Developing NE Tagger. In Matoušek, V. and
Mautner, P. (eds.). Text, Speech and Dialogue:
Proceedings, pp. 188–195.

Tkachenko, M. and Simanovsky, A. 2012.
Named Entity Recognition: Exploring Features.
In Proceedings of KONVENS 2012, Vol. 5,
pp. 118–127.

Yadav, V. and Bethard, S. 2018. A Survey on
Recent Advances in Named Entity Recognition
from Deep Learning Models. In Proceedings of the
27th International Conference on Computational
Linguistics, pp. 2145–2158.

Yen, A.-Z., Huang, H.-H. and Chen, H.-H. 2017.
Fusing Domain-Specific Data with General Data
for In-Domain Applications. In Proceedings of
the International Conference on Web Intelligence
pp. 566–572. DOI: 10.1145/3106426.3106473.

Zeman, D., Hajič, J., Popel, M., Potthast, M.,
Straka, M., Ginter, F., Nivre, J. and
Petrov, S. 2018. CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pp. 1–21.
DOI: 10.18653/v1/K18-2001.



Quality of Word Vectors and its Impact on Named Entity Recognition in Czech 169

Zhou, G. and Su, J. 2002. Named Entity Recognition
using an HMM-Based Chunk Tagger. In
Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics,
pp. 473–480. DOI: 10.3115/1073083.1073163.

Žukov-Gregorič, A., Bachrach, Y. and Coope, S.
2018. Named Entity Recognition with Parallel
Recurrent Neural Networks. In Gurevych, I. and
Miyao, Y. (eds.). Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics, Vol. 2: Short Papers, pp. 69–74.
DOI: 10.18653/v1/P18-2012.

AUTHOR’S ADDRESS
František Dařena, Department of Informatics, Faculty of Business and Economics, Mendel
University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, e-mail:
frantisek.darena@mendelu.cz

Martin Süss, Department of Informatics, Faculty of Business and Economics, Mendel University
in Brno, Zemědělská 1, 613 00 Brno, Czech Republic


