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Abstract

Due to expanding demand for the level of testing on one side and reduction of costs on the other side, 
the question how to replace expensive destructive testing of medical devices without compromising 
the quality of final product arising urgently. This situation is common within all highly regulated 
industries – in this article is addressed the problem from medical device manufacturing industry. 
Based on real data containing testing and validation datasets, logit model and classification tree model 
are estimated for establishing the relationship between result of destructive test and measurements 
of explored device. Results point to possibility of replacing destructive test by non-destructive one 
in our case.

Keywords: classification tree model, destructive test, logit model, medical devices manufacturing, 
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INTRODUCTION
Every day business in highly regulated industries, 

like medical devices manufacturing, is simply 
the conflict. On the one side there are two main 
requirements in terms of manufacturing process 
definition. Maybe it would be better said duties. 
During development phase there should be done 
the process validation activities where the evidence 
of process capability is given. After the market 
launch during product life cycle the process control 
is required to have the evidence that the processes 
are within the same conditions as during process 
validation testing were.

But in the same time the strong demand 
for reducing of time and costs needed for any 
new product development or even the change 
implementation should be reflected, and the 
manufacturing costs are of high interest because of 
competition in the field. The economic side of the 

problem is covered for example in Marešová et al. 
(2018). Authors analyse and evaluate the role that 
economic indicators and economic effectiveness 
during the development of a medical device. Study 
further expanded on how other industries are 
different in terms of development as compared the 
medical industry. Real life is rather well described 
in detail.

Actual situation is even more complicated for 
manufacturers active under EU laws, where new 
MDR  2017/745 is coming (details can be found 
in Clemens, 2018). It can be stated that there is 
nothing wrong with MDR itself. But the way how 
it going to be implemented and readiness of all 
players on medical devices manufacturing and 
marketing creates the doubts and worries. One of 
the possibilities how to fulfil these requirements is 
to replace the expensive destructive testing from 
validation phase by much cheaper and faster 
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non- destructive testing during production phase. 
To implement this without compromising the 
quality and reliability of manufacturing processes 
the strong relation between the result of direct, 
typically destructive, test and the non-destructive 
testing of products during standard production 
could give the solution. From the practical point of 
view the way how to provide system with evidence 
like this should be described and rationalized in 
advance what means during the planning phase.

When company plan to introduce a non- destructive 
test instead of a destructive test, it has information 
coming from a destructive test typically. From this 
test coming the direct answer if the requirement 
was fulfilled. This value could be called structural 
value. In terms of target described above, depending 
value which could be measured by non-destructive 
test must be found. In the case of success so-called 
response variable have to be selected. All of this is 
typically job of development and process engineers. 
Now is time for quality assurance engineers and 
the first choice is to find and set up the relation 
between those two values. The simplest way can be 
the standard linear model (e.g. a simple regression 
model) and can be thought of as having two ‘parts’. 
These are the structural variable and the response 
variable. 

In common there are several tools well described 
in ASTM standards like ASTM (2018), which 
covers methods and equations for computing 
and presenting basic statistics and ASTM (2017) 
which deals with regression analysis. The problem 
comes because structural component is typically 
more or less normally distributed, covered 
a  normally distributed error and rather often is 
the random component. The response variable 
could not be normally distributed. The idea can 
be to find other ways than these depending on 
normality assumption how to support and quantify 
relationship between two values and describe the 
way how to set up strong evidence of adequacy 
of such non-destructive testing during routine 
production. In the specific situation the goal is to 
verify possibility of replacement of destructive 
testing based on tensile test of the component 
by the non-destructive testing containing only 
measurement of the component part.

Statistical or artificial intelligence methods 
from the field of classification can be a  correct 
solution. In Beneš and Hampel (2016) is explored 
destructive test of the part, where two pipes of the 
same diameter are connected. In the first process 
step one pipe is expanded by the tool. This tool is 
pressed against the pipe by defined, constant, force 
therefore the deepness of widening is depending 
on the same characteristics of material like the 
firmness of their connection later on. Next process 
step is to connect both pipes by the pressure. 
Destructive test during design verification is tensile 
strains test and the force is measured. The device 

passed the test when it is not broken after the test. 
For the purpose of non-destructive test evaluation, 
overlap length of pipes is measured. Tensile 
strength was modelled by pipes overlap length. The 
relationship was identified as unsymmetrical and 
was well described by cubic polynomial. Finally, 
logit and probit models were used to describe 
results of destructive test.

The aim of this paper is to evaluate the possibility 
of replacing destructive testing based on tearing 
of the component with non-destructive testing 
involving several measurements of the component. 
More specifically, without empirical analysis, it is 
unable to assess whether the measurements taken 
in the context of non-destructive test have any 
relation to the result of the destructive test. If it will 
be possible to find such a  relationship by several 
models, a  model that better identifies the cases 
where the product did not pass the destructive test 
will be preferred.

MATERIALS AND METHODS
The problem concerns production of the relatively 

simple but important part of advanced medical 
device illustrated in Fig.  1. The standard process 
control tool is destructive tensile test on the samples 
with given force on the limit. The acceptance 
criterion is that part should pass this test without 
breakage. Finally, binomial variable indicates that 
device passed the test  (1) or failed in the test (0) is 
analysed.

When suggesting replacement of this destructive 
test by non-destructive one, following variables 
were considered (based on the opinion of expert 
in manufacturing of this type of medical devices): 
Fork distance (Fdist), Parallelism (Par) and Depth of 
crimping (Dcri), see Fig. 1. Fork distance is designed 
to be 5.3 mm, both lower and higher values means 
an unwanted condition that can cause device 
damage in real use. Ideal Parallelism value is equal 
to zero, high values are unwanted. Correct depth of 
crimping is set to 0.45 mm; lower values can cause 
disconnecting of the device and higher values may 
cause breakage of the component.

 1 

 2 

 3 
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1: Illustration of product under investigation with associated 
characteristics. Measure a  is called Fork distance. Together 
with analogous distance b, so-called Parallelism characteristic 
is defined as absolute value of a – b. Finally, c represents Depth 
of crimping.
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This is a  real case of manufacturing and testing 
within a  medium-sized medical manufacturing 
company that has provided data and other relevant 
information. To assess the possibility of replacing 
the destructive test by non-destructive one, results 
of 6 typical destructive test series, where failed 
pieces appear, 60 devices were tested in each, are 
considered. The randomly selected three test series 
are used as testing dataset (batches are merged 
with idea to reach results robust in the terms  of 
the ability to describe the possible variability 
of individual batches), following three as validation 
datasets (which corresponds to the practice of 
destructive testing). Variables Fdist, Par and Dcri 
are included together with result of destructive test. 
Characteristics of these datasets are given in Tab. I.

The question arises whether results of destructive 
test can be explained by measures Fdist, Par and 
Dcri. For this purpose, logit model (see for example 
Agresti, 2007) was employed as a  baseline tool for 
binary classification. From experience with analysis 
presented in Beneš and Hampel (2016), cubic 
polynomials for Fdist and Dcri and with linear form 
of Par is considered as a  starting model. Further, 
classification tree model (see for example Breiman 
et al., 2017) is employed, which can reveal complicated 
relations in data. This model belongs to artificial 
intelligence methods. In comparison to majority of 
these methods, classification tree calculations can be 
explained in details and outputs are presented clearly. 
This makes the resulting decision trees a very suitable 
basis for managerial decisions. Binary classification 
characteristics are elaborated in accordance with 
Klepáč and Hampel (2017). Techniques related to 
ROC curve are described in Staňková and Hampel 
(2018, 2019). All calculations were performed in 
computational system Matlab  R2019b. Level of 
significance was set to 0.01.

RESULTS
Logit model with cubic polynomials was 

estimated, but the third powers of variables were 
not statistically significant. The third powers were 
removed from the model gradually, and the resulting 
model with all variables significant is presented in 
Tab. II. Used variables have power to describe results 
of destructive test, but it is necessary to investigate 
quality of this description.

Quality measures of logit model predictions 
are summarised in Tab.  III. Relatively high total 
accuracy was reached for testing dataset as well as 
for validation datasets. This is given mainly by high 
accuracy of passed cases predictions. Although the 
absolute number of wrongly classified failed cases 
is low, it is hardly acceptable not to catch just one 
potentially defective product. Note that logit model 
with cubic polynomials resulted in slightly higher 
total accuracy and passed accuracy, but there was 
about 60% and 30% drop in failed accuracy for 
validation sets 2 and 3.

Results described above are related to logit 
model with “standard” threshold 0.5. Because 
such a  setting may not be the best choice, the 
ROC curve has been estimated to find the optimal 
threshold. Quality of classification was measured 
by the area under ROC curve characteristics, which 
resulted 0.985 – this can be interpreted as “perfect 
classification”. Both “distance to corner” and 
Youden index (equal to 0.885) indicated optimal 
threshold of 0.821. Within this setting, prediction 
accuracy characteristics changed slightly, see 
Tab.  IV. For the training dataset, total accuracy 
remained the same, failed accuracy increased for 
about 10  percentage points and passed accuracy 

I: Characteristics of investigated datasets

Dataset
Count Mean Standard deviation

Total Failed Fdist Par Dcri Fdist Par Dcri

Training 120 29 5.361 0.192 0.438 0.033 0.046 0.014

Validation 1 60 1 5.340 0.179 0.449 0.038 0.050 0.006

Validation 2 60 9 5.383 0.153 0.444 0.027 0.039 0.016

Validation 3 60 9 5.352 0.156 0.433 0.039 0.041 0.011

II: Estimated logit model

Parameter Estimate SE T p-value

Intercept -52191 12854 -4.06 < 0.001

Fdist 18621 4627.1 4.02 < 0.001

Fdist2 -1740 432.21 -4.03 < 0.001

Par -42.15 13.448 -3.13 0.002

Dcri 10819 2917 3.71 < 0.001

Dcri2 -12260 3320.2 -3.69 < 0.001

III: Prediction accuracy (in %) of estimated logit model

Dataset Total 
accuracy

Failed 
accuracy

Passed 
accuracy

Training 95.0 82.8 97.4

Validation 1 91.7 100.0 91.5

Validation 2 96.7 88.9 98.0

Validation 3 96.7 77.8 100.0
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decreased for 2  percentage points. When failed 
accuracy is primary characteristics, it is possible 
to declare that the new threshold improves results 
of classification. The result is not the same for 
validation datasets: total accuracy decreased as well 
as passed accuracy, but failed accuracy increased 
only for the third validation dataset.

Finally, classification tree was estimated with 
default setting for medium-size trees. Resulting 
decision tree is presented in Fig.  2. As expected, 
variables Fdist and Dcri are presented twice, Par 
once. Decision tree gives algorithm for getting 
prediction for arbitrary measures of Fdist, Par and 
Dcri. Limiting values of these values are given, but it 
is necessary to use them simultaneously.

Quality of classification tree model predictions 
can be assessed by Tab. V. Total accuracy is slightly 
lower than for logit model, but failed cases accuracy 
is higher in average. Especially, failed cases 
accuracy is 100 % for testing dataset. 

DISCUSSION 
Results are of similar quality like in Beneš 

and Hampel (2016). In that paper, total accuracy 
of prediction based on testing dataset is 88.3% 
and ranges from 96.7% to 100.0% for validation 
datasets. The main difference lies in the fact that 
in compared paper there is only one measured 
variable and in logit model this variable occurs 
in the cubic polynomial function form. In present 
paper is estimated multidimensional model with 
quadratic polynomial maximally. Theoretically, 
asymmetries requiring cubic polynomial can be 
present also in our case, but in multivariate model 
there is no space for the third powers of variables. 

Predictions based on decision tree estimated 
by classification tree model can be compared to 
expert approach, where device pass the test when 
5.15  <  Fdist  <  5.45,  Par  <  0.3  and  0.4  <  Dcri  <  0.5. 
With these settings predictions are provided and 
their accuracy is evaluated: for entire dataset, all 
passed cases are correctly estimated, but almost all 
failed cases are predicted as passed. It is visible, that 
expert approach underestimates effect of deviations 
from ideal measurements on damage of the device. 
Ranges of parameters given by classification tree 
model can warn experts about this.

Although the performed analysis shows the 
possibility to replace destructive test by non-
destructive one, it is necessary to point out the 
limits of this analysis. The most serious limit is the 
fact, that because medical manufacture is strongly 
regulated industry, it is necessary to check whether 
the resulting procedure is in accordance with the 
regulations. Probably some “safety adjustment” 
given by the expert way will be provided to eliminate 
the production of defective pieces.  Although 
representative batches of products have been 
selected for analysis, it will be necessary from time 
to time to verify the parameters found for a  non-
destructive test by performing a destructive test. The 
reason may be wearing of production machines, 
change in the composition of the material for 
production and other minor influences.

Performed analysis has important economic 
aspects. In general, such consequences will be very 
case specific. However, it is possible to evaluate the 
data of the real business case as is provided in the 
following text. The main reason for this alternative 
testing is to reduce test costs necessary for process 
control during regular production without any 
compromise in quality of the product. The situation 
where the test results are coming from is rather 
typical: high volume of annual production with 
rather regular price for one piece. The annual 
production of such product is approximately 
1 million parts with the price €1.70 for each.

The current practice is based on the process 
validation results where the process was under 
the control with acceptable process capability Cpk 
of 1.55, but still with rather significant variability 

IV: Prediction accuracy (in %) of estimated logit model with 
optimal threshold

Dataset Total 
accuracy

Failed 
accuracy

Passed 
accuracy

Training 95.0 93.1 95.4

Validation 1 88.3 100.0 88.1

Validation 2 93.3 88.9 94.1

Validation 3 95.0 88.9 96.1

 6 
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  8 2: Decision tree based on estimated classification tree model

V: Prediction accuracy (in %) of estimated classification tree 
model

Dataset Total 
accuracy

Failed 
accuracy

Passed 
accuracy

Training 91.1 100.0 94.7

Validation 1 91.7 100.0 91.5

Validation 2 88.3 88.9 88.2

Validation 3 95.0 88.9 96.1
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expressed by standard deviation. Therefore the 
process control is settled as destructive testing and 
the sample size is determined using the AQL tool as 
described by the ANSI/ASQ standard Z1.9 (ANSI/ASQ, 
2018). The typical batch size contains 250  pieces 
therefore based on a potential risk, 8 pieces should 
be overproduced to have 250 acceptable parts in the 
end. Overproduction of 8 pieces on every 250 pieces 
means extra 3.2% for each manufacturing batch.

It means that to have 1 million of acceptable 
parts ready, it is necessary to produce 32,000 pieces 
above. If the price of each is €1.70 it means 
existence of scrap material in price of €54,400 per 
year because of the required destructive testing. 
But this is the direct price only. Mentioned facility 
is producing complete working elements of three 
different types where the price of the cheapest one 
is approximately €3, the middle one is about €5 and 
the most expensive one cost as much as €11. The 
cheapest one is the most common and makes about 
60% of annual turnover, while the middle one is 
about 30% and the most expensive about 10%. Those 
numbers are only rough estimation based on the data 
from last 3 years and they are changing. The changes 
show that the portion of more expensive types is 
growing, so the data can be used from the past as 
a worst case because if the trending will stay as it was 
documented, the impact of discussed superseding 
destructive testing by non-destructive ones supported 
by statistical evaluation will be higher.

The 32,000 pieces mentioned above represent 
19,200 of the cheapest working elements, 9,600  of 
the middle priced ones and 3,200 of the most 
expensive ones. Expressed in its value it means 
€35,200 on the most expensive working elements, 
€48,000 on the middle-priced ones and €57,600 
on the cheapest ones. All together means €140,000 
per year. Considering this number, it is possible to 
calculate the Return of Investment (ROI) curve to 
see the possible impact on facility Profits and Losses 
calculation, see Fig. 3. As a cost of mentioned testing 

it is considered €1,836 direct cost of used material 
and estimated €44,320 indirect cost of labour etc. 
This results in €46,156 as the worst case.

The important thing is that in this case it is 
adequate to speak about the business situation 
“sales of what can produce” not “produce what 
can sell”. The manufacturing site is the member 
of the corporation and the working elements are 
the bottleneck of complete HF resection electrodes 
line. The more working elements will be produced, 
the more complete electrodes will be sold out. The 
average price of a complete electrode is about €615 
for each so for a corporation those 19.200 electrodes 
mean increase of turnover of €11,808,000. The 
margin is not available in this case so it is not possible 
to calculate difference in the profit. Still, beside of the 
additional turnover it definitely means additional 
satisfied physicians and patients, in the end.

Currently it is possible to evaluate the usability of 
this tool during another business case: manufacturing 
of worldwide unique GIT biodegradable stents 
where the situation is completely different. The price 
is much more stable, and forecast is about annual 
decrease of 2% only. In the same time this product 
is manufactured on individual order therefore 
the standard process validation is not possible. 
It is necessary to go for manufacturing of two 
identical pieces, where one of them will be tested 
by destructive testing and the second will be sent 
to customer. In such situation it makes even better 
sense despite small annual production. 

However, the total amount of pieces produced 
during estimated life cycle five years will be very 
probably below 2,500  pieces only, the economic 
effect is still high due to high price of sole product. 
With safety factor mentioned above this situation 
shows the payback moment after little bit more 
than two years and the complete saving before 
the end of life cycle is nearly 50% of calculated 
turnover. Similarly, without safety factor it would 
be even more promising. 

  9 
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3: Calculated return of investment curve
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In this case, a company is currently in the stage 
of trying to find the proper characteristic to set up 
adequate function. There is common understanding 
that for degradation process of such material 
the residual water content is critical and should 
be above the limit. Actually, several engineering 
studies is running to find the characteristic, easy to 
be measured by non-destructive testing. 

The economic aspect should be evaluated very 
carefully for each situation specifically starting with 
ROI calculation. Whether outlined approach will 
be appropriate for manufacturers or not, depends 
on the specific situation of each other. Suggested 
way of non-destructive testing cannot be the 
universal solution for any kind of testing during the 
production. 

CONCLUSION
It is possible to conclude that relationship between binomial variable the component is destructed, and 
measured variables Fork distance, Parallelism and Depth of crimping was found based on the dataset 
dedicated for estimation. This means that it is possible to set up these measurements as adequate for 
described process control. Adequate description is given by quadratic polynomial maximally. Stability 
of this relationship was judged by validation datasets. Performed analysis shows that it is possible 
to replace destructive test by non-destructive one on such confidence level. The acceptability of this 
confidence level should come from risk analysis of such product and discussed characteristic.
Finally, proposed analysis can be seen as an effective and viable way how to avoid destructive 
testing. From the economic point of view, attempts to find alternative test method make sense in the 
case of high-volume production or with high price of one unit together with verification or high-
volume process control sampling. Calculation of effectiveness should be executed any time but in 
these situations, the initial cost of alternative test method validation will be paid back in acceptable 
time and increase the competitiveness on the market.
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