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Abstract: Over the last decades, climate change has triggered an increase in the frequency of spruce
bark beetle (Ips typographus L.) in Central Europe. More than 50% of forests in the Czech Republic are
seriously threatened by this pest, leading to high ecological and economic losses. The exponential
increase of bark beetle infestation hinders the implementation of costly field campaigns to prevent and
mitigate its effects. Remote sensing may help to overcome such limitations as it provides frequent and
spatially continuous data on vegetation condition. Using Sentinel-2 images as main input, two models
have been developed to test the ability of this data source to map bark beetle damage and severity.
All models were based on a change detection approach, and required the generation of previous forest
mask and dominant species maps. The first damage mapping model was developed for 2019 and
2020, and it was based on bi-temporal regressions in spruce areas to estimate forest vitality and bark
beetle damage. A second model was developed for 2020 considering all forest area, but excluding
clear-cuts and completely dead areas, in order to map only changes in stands dominated by alive
trees. The three products were validated with in situ data. All the maps showed high accuracies (acc >

0.80). Accuracy was higher than 0.95 and F1-score was higher than 0.88 for areas with high severity,
with omission errors under 0.09 in all cases. This confirmed the ability of all the models to detect
bark beetle attack at the last phases. Areas with no damage or low severity showed more complex
results. The no damage category yielded greater commission errors and relative bias (CEs = 0.30–0.42,
relB = 0.42–0.51). The similar results obtained for 2020 leaving out clear-cuts and dead trees proved
that the proposed methods could be used to help forest managers fight bark beetle pests. These biotic
damage products based on Sentinel-2 can be set up for any location to derive regular forest vitality
maps and inform of early damage.

Keywords: bark beetle; Ips typographus L.; pest; remote sensing; change detection; forest damage;
spruce; Sentinel-2; damage mapping; multi-temporal regression

1. Introduction

In the last three centuries, the forests in the Czech Republic have changed dramatically. Triggered
by economic reasons, natural mixed forests were replaced by even-aged spruce or pine monocultures.
The spruce currently accounts for 49.2% of stands and pine does for 15.9% [1]. These stands are less
stable and more threatened by abiotic factors (e.g., drought, wind, snow, glazed frost) and, more
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recently, by anthropogenic influences (e.g., air pollution) as well [2]. Over the last years, decrease of
forest vitality, growth under stress, and greater susceptibility to spruce bark beetle (Ips typographus L.)
infestation are being caused by global climate change, especially long-term droughts with extremely
high temperatures in the vegetative period [2]. The common harvested volume per year in the Czech
Republic is about 15 million m3 in total and around 1 million m3 of this amount is infested by insects.
However, in the last 5 years, a rapid increase in wood infested by insects (WII) has been registered:
2015—16.1 million m3 of harvested wood (2.3 million m3 of WII); 2016—17. 6 million m3 (4.4 million
m3 of WII); 2017—19.3 million m3 (5.8 million m3 of WII); 2018—25.6 million m3 (13 million m3 of WII);
and 2019—32.5 million m3 (22.8 million m3 of WII, and 66,000 ha of damaged forests) [3]. For 2020,
the estimate is ranking between 40 and 60 million m3 of WII [4].

Permanent monitoring, early identification, and harvesting of affected trees are essential in forest
protection. Although areas under bark beetle infestation can be easily determined through field work,
there are currently no standard field methods in the Czech Republic for early identification of areas
affected by outbreaks [5]. The situation becomes more serious as the infested area increases, hindering
the possibility of collecting enough data. Moreover, conventional ground methods are time consuming
and, in the case of large damaged area, they are usually expensive and not efficient, as they require the
assessment of individual trees (e.g., recording the concentration of red-brown dust in bark crevices,
holes or marks in the bark, and peeling the bark for more precise determination of infestation stage) in
large regions [6]. This lack of control can contribute to an increase in bark beetle population levels
with an increasingly negative impact on mortality and loss of forest yield. The increase of outbreaks
in periods of extreme drought predicted in the context of climate change [7] could translate into a
significant increase in the conditions for the spread of this pest [8–11]. Hence, more effective plans
to control the pests are urgently needed. More specifically, in Central Europe, the area prone to be
affected by pests such as bark beetle is growing [12–14]; therefore, the need for monitoring large areas
is steadily increasing, thus hindering the design and implementation of field campaigns.

Remote sensing data are useful for detecting and monitoring areas infested by bark beetles [15–17],
as they provide global, spatially continuous, and periodic data on vegetation condition [8]. Remote
sensing data can also contribute to reduce costs associated with field campaigns, as there are a large
number of freely available data sources with global coverage and regular revisit times (e.g., Landsat
and Sentinel programmes).

Trees infested by bark beetle (Figure 1) go through three phases: (1) the green attack stage, when
the tree needles remain green; (2) the red attack, when needles turn progressively from green to
yellow and reddish tones; and (3) the grey attack, when dead needles fall and the bare tree stands
grey [12,18]. Dead trees (i.e., in red or grey attack phases) are clearly visible using a wide range of
satellite images [15]. Most studies have used multispectral high resolution data as main input [19–22],
reaching accuracies around 90% for tree mortality (i.e., red and grey attack) detection associated with
bark beetle infestation [20,23]. The results have been similar in studies that used very high resolution
images (i.e., <1 m) [24,25]. Special interest has been given those studies based on very high resolution
hyperspectral images [5,26–29], which have yielded accuracies close to 90% for bark beetle detection at
red or grey attack phases. Synthetic Aperture Radar (SAR) data have also been tested to detect tree
mortality induced by bark beetle [17], reaching mapping accuracies between 55% and 88% [30].

While detection at red and grey phases is valuable for assessing environmental and economic
losses caused by bark beetles, it is not effective to stop the spread, as insects have already completed
their lifecycle. Early alert systems are needed to curb the spread as well as to help foresters know the
factors facilitating bark beetle attack [22]. The effects of bark beetle on leaf properties affect reflectance in
the near-infrared (NIR) and shortwave infrared (SWIR) spectral domains (i.e., 730–1370 nm) [18], which
are represented within Sentinel-2 and Landsat spectral bands. The use of satellite imagery to detect bark
beetle infestation at green attack phase has not yielded satisfactory results in most cases [5,19,22,28].
Nevertheless, some correlation between forest health and later bark beetle attack have been reported,
using both optical [5,19] and L-band SAR data [30]. Approaches based on multi-temporal vegetation
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indices have proven to be the most effective to detect bark beetle effects at the green attack phase.
The correlation between satellite-derived vegetation indices and areas affected by bark beetle at early
stages has been tested with Sentinel-2 and Landsat-8 [22] and Landsat-5 images [19]. These studies
have proven that changes in photosynthetic activity, vegetation water content, and leaf area index (LAI)
are correlated with bark beetle infestation at green attack phase, especially with Sentinel-2, yielding a
user’s accuracy of 67% for green attack mapping.

Figure 1. Trees infested by bark beetles (Ips typographus L.) in the study area. True colour orthophoto
with 6 cm spatial resolution captured on 17/05/2020.

Since 1986, a regular forest health assessment has been performed in the Czech Republic using
the systematic network of the International Cooperative Programme on Assessment and Monitoring
of Air Pollution Effects in Forests (ICP Forests). This network is based on core monitoring sites of
16 × 16 km and selected areas of 8 × 8 km, with a total of 306 areas. At altitudes from 150 m to 1100 m,
approximately 11,000 trees are evaluated every year, representing 28 species of trees in different age
classes. In addition to ground-based evaluation, Landsat-5 satellite images have been used since
the mid-1980s, allowing a uniform systematic evaluation unbiased by a subjective factor in ground
visual assessment [31]. Since 2016, satellite images from the Sentinel-2 satellites have been analysed
at one-year intervals. Only cloudless images of the Czech Republic are used, selected during the
phenological summer (i.e., June to August). Leaf area index (LAI) maps are derived from Sentinel-2
images, which have been validated with LAI ground surveys and defoliation values from ICP Forests
data. The health status of the stands is assessed on the basis of LAI changes, which significantly
correlate with defoliation in the selected time interval [32,33]. For more detailed mapping of bark
beetle outbreaks at higher spatial resolution and more frequent updating, a monitoring system to
detect salvage cutting and standing dead wood using Planet images has been used since 2018 in the
Czech Republic. The following main layers are used to build this system: (1) Areas dominated by
spruce and higher than 12 m. The forest tree map is created by the classification of Sentinel-2 images,
performed on the basis of the spectral response of tree species in different phenological phases using
training data collected during the National Forest Inventory (NFI) ground survey. The Planet system
also uses a digital surface model (DSM) derived from aerial images taken in 2016 and 2017. The DSM
is normalized using digital terrain model derived from airborne laser scanning to obtain a canopy
height model. (2) Map of LAI decrease, which detects either the clear-cuts or dead wood. Normalized
difference vegetation index (NDVI) images at 3 m spatial resolution and two additional categories are
detected: standing dead forest and newly established clear-cuts. These categories are distinguished
based on the Triangular Greenness Index (TGI) [34].
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Different Czech institutions are also conducting research into the use of multispectral and
hyperspectral cameras carried by unmanned aerial vehicles (UAVs) [25,35,36]. These systems can
provide images at local scales almost anytime with very high spatial resolution, which allows the
evaluation of health at the level of individual trees. The disadvantage of UAVs compared with high
resolution satellites such as Sentinel-2 or Landsat is the cost of data acquisition and the complexity of
data processing, although this disadvantage is gradually disappearing with the development of cloud
computing. Another shortcoming is that most multispectral cameras are used in UAV-based studies,
which allow the calculation of only a few vegetation indices (e.g., NDVI or Normalized Difference
Red Edge Index-NDRE) [37]. Hyperspectral cameras are more expensive, and data processing is
more complicated. In contrast, Sentinel-2 provides free, easy to process data with a short revisit time,
thus allowing more regular estimates about vegetation status.

In this study, a multi-temporal regression-based change detection method is proposed to map
areas affected by bark beetle with different degree of severity at 10 m spatial resolution. Moreover,
a comparison is carried out between forest vitality estimates and field records of forest damage caused
by Ips typographus L. infestation.

The aim of this study is to test a methodology for the automatic mapping of bark beetle-induced
damage using Sentinel-2 images. The specific objectives of this work are (a) to evaluate the performance
of the damage detection algorithm, (b) to study the feasibility of discriminating areas affected with
different intensity or level of mortality, and (c) to assess the influence of possible clear-cuts not related
to bark beetle in the final damage maps.

2. Study Area and Data

2.1. Study Area

The study site was located in a forest area owned by Mendel University in Brno and managed
by the University Forest Enterprise (UFE), in Křtiny, Czech Republic (49.170◦N, 16.440◦E. Figure 2).
This property covers around 10,000 ha of forest stands. Mixed forests are prevailing where the
proportion is 38% of conifers (19% spruce, 8% pine, 8% larch, and others) and 62% of broadleaves
(33% beech, 15% oak, 8% hornbeam, and others). Altitude ranges between 200 and 570 m. Mean
annual rainfall is 610 mm and mean annual temperature is 7.5 C. UFE forest management is focused
on close-to-nature methods, using minimum clear-cuts and a high share of natural regeneration.

Figure 2. Location of study area. Overview maps of the (a) national and (b) regional context. (c) Forest
area managed by University Forest Enterprise (UFE).
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In the Czech Republic, salvage cutting has increased dramatically in the last three years. Figure 3
shows the total wood production in millions of cubic meters. Table 1 shows salvage cutting volume at
the UFE forest.

Figure 3. Progress of the volume of timber harvesting in millions of cubic meters, divided into
coniferous and deciduous timber. Source: Ministry of Agriculture of the Czech Republic, 2020 [31].

Table 1. Summary of salvage cutting volumes (m3) per species and year (until 15 July 2020) at the
University Forest Enterprise (UFE) forest.

Species 2018 2019 2020 Total

Picea abies 30,564 59,958 33,897 124,419
Pinus sylvestris 2187 6735 4671 13,594
Larix decidua 4212 5711 1608 11,531

Fagus sylvatica 846 5167 1440 7452
Abies alba 1153 2563 503 4220

Quercus petraea 296 1020 471 1786
Fraxinus excelsior 93 377 473 943

Pseudotsuga menziesii 184 262 98 543
Abies grandis 35 191 8 234
Quercus robus 33 150 21 204

Carpinus betulus 64 116 23 203
Other 258 369 71 698

Total 39,925 82,619 43,284 165,828

A total of 32.58 million cubic meters of raw wood was harvested in the forests of the Czech
Republic in 2019, which means a further increase of 6.89 million m3 compared with the previous year.
The salvage cutting of 30.94 million m3 of wood contributed significantly to this volume. The share of
salvage cutting in 2019 was 95%. Thus, the initial conditions for planned forest management continued
to deteriorate. In terms of the composition of harvesting by tree species, the volume of coniferous wood
harvested increased by 7.1 million m3 compared with 2018 to a total of 31.31 million m3. The share of
coniferous wood harvesting in total harvesting was approximately 96%. The proportion of deciduous
and coniferous wood harvesting is due to salvage cutting, especially the wood infested by bark beetle
(Figure 4).

In 2019, 20.7 million m3 of harvested spruce wood infested by bark beetle was registered in
the Czech Republic, which represents an increase compared with 2018 by more than 70%, when
approximately 12 million m3 was recorded (2017—5.34 million m3) (Figure 5). Harvested wood in 2019
was practically exclusively infested with European spruce bark beetle (Ips typographus L.), which is
usually accompanied by six-toothed spruce bark beetle (Pityogenes chalcographus L.) and double-spined
bark beetle (Ips duplicatus Sahlberg), especially in northern and central Moravia and Silesia, but locally
often elsewhere.
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Figure 4. Progress of the volume of salvage cutting grouped by cause. Source: Ministry of Agriculture
of the Czech Republic, 2020 [31].

Figure 5. Recorded volume of infested spruce wood harvested in the years 2005 to 2019. Source:
Ministry of Agriculture of the Czech Republic, 2020 [31].

The massive spruce infestation with bark beetles has been triggered by higher average temperatures
and lower precipitation over the last five years compared with the long-term normal. Extreme drought
prevailed, especially in 2015 and 2018 (Figure 6).

Figure 6. Deviations from the mean temperatures and precipitation (1981–2010) in the period 2000–2020.
* Records for 2020 were acquired at the end of August. Source: Czech Hydrometeorological Institute,
2020 [38,39].
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2.2. Sentinel-2 Satellite Images

In this study, we used Sentinel-2 images provided by Copernicus Open Access Hub to detect bark
beetle damage. These images were acquired in format Level-2A (bottom of atmosphere reflectance).
Sentinel-2 L2A images are generated by applying atmospheric and topographic correction algorithms
to the Level-1C (top of atmosphere reflectance) images [40]. In order to focus the change detection in
areas prone to be attacked by the spruce bark beetle, forest/non-forest and dominant species maps
were produced for the study area (Figure 7). These first maps were also developed using Sentinel-2
images (Table 2).

Figure 7. General workflow to obtain bark beetle damage from Sentinel-2 images.

Table 2. Sentinel-2 images used to produce each classification map.

Product Timing Forest/Non-Forest Dominant Species Biotic Damage

Biotic damage A
2019

t0 2018-03-22 2018-03-22 2018-09-10
t1 2018-08-29 2018-08-29 2019-06-30

Biotic damage A
2020

t0 2019-04-01 2019-04-01 2019-06-30
t1 2019-06-30 2019-06-30 2020-07-01

Biotic damage B
2020

t0 2020-04-02 2020-04-02 2019-06-30
t1 2020-07-01 2020-07-01 2020-07-01

Different Sentinel-2 bands (Table 3), vegetation indices, and texture indices were used for each
process. The whole process, summarised in Figure 7, is explained in the subsequent sections.

Table 3. Sentinel-2 Level 2A bands. NIR, near-infrared; SWIR, shortwave infrared.

Sentinel-2 Bands Central Wavelength (nm) * Spatial Resolution (m)

Band 01-Coastal aerosol 442.7 60
Band 02-Blue 492.4 10

Band 03-Green 559.8 10
Band 04-Red 664.6 10

Band 05-Red Edge 1 704.1 20
Band 06-Red Edge 2 740.5 20
Band 07-Red Edge 3 782.8 20

Band 08-NIR 832.8 10
Band 8A-Narrow NIR 864.7 20
Band 09-Water vapour 945.1 60

Band 10-Cirrus 1373.5 60
Band 11-SWIR 1 1613.7 20
Band 12-SWIR 2 2202.4 20

* Central wavelength of Sentinel-2A MultiSpectral Instrument (MSI) bands.
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2.3. Ground Truth Data

Records of salvage cutting and records of clear-cuts were used to build the ground truth dataset,
together with a forest stand map derived from forest management plan (valid for the period 2013–2022).
The records were collected continuously by foresters for the needs of the forest enterprise and state
forest administration, and contained the ID of forest stands, month and year of the cutting, volume,
type of cutting, cause, and area. A detailed explanation of ground truth generation can be found in
Section 3.4.

3. Methods

Two algorithms were developed to map bark beetle damage: biotic damage A (BDA) and biotic
damage B (BDB), considering as damage any negative deviation from the standard development of the
forest (i.e., clear decrease of forest health). Both algorithms work by detecting changes between two
dates. The BDA algorithm included masking Sentinel-2 surface reflectance images to areas dominated
by spruce in the starting date of the pair. Hence, any area with dead trees or clear-cuts might be
detected as bark beetle damage. In the case of BDB, satellite images were masked to the whole forest
area in the final date of the pair (not in the initial one). Thus, all dead trees and clear-cuts could not
be classified as damaged areas by the BDB algorithm. The objective of the difference between BDA
and BDB was to test the ability of the algorithms to detect damage in non-cut areas and with most
of the trees still alive. This allowed us to assess the true performance of our approach to detect the
effects caused by bark beetle, as BDB leaves out possible over-detection caused by clear-cuts. Three
different layers were ultimately developed (Table 2, Figure 7 Step 4): (1) the BDA layer using 2019
imagery (BDA19), (2) the BDA layer using 2020 imagery (BDA20), and (3) the BDB layer using 2020
imagery (BDB20) to map only changes in stands dominated by alive trees. The algorithms for BDA19
and BDA20 were identical, the only difference being the dates of the input imagery (2018–2019 and
2019–2020, respectively). The common steps for producing all damage maps from Sentinel-2 images
are summarised in the flowchart (Figure 7) and explained in detail in the following subsections.

3.1. Forest/Non-Forest Classification

To derive any of the damage detection layers explained above (Figure 7, Step 4.), we first apply a
classification algorithm to discard all the pixels belonging to non-forest cover (Figure 7, Step 2.1.) [41,42].
To represent phenological variations in the forest canopy, two Sentinel-2 images were used, one for
winter and one for summer (Table 2). Green, red, NIR, and SWIR bands were selected. SWIR
bands, originally at 20 m spatial resolution, were resampled to the resolution of the other bands, 10 m.
Normalized difference vegetation index (NDVI, Equation (1)) [43] and modified soil adjusted vegetation
index (MSAVI, Equation (2)) [44,45] were computed together with two texture indices: homogeneity
(Equation (3)) and entropy (Equation (4)) [46]. A supervised classification method based on random
forest algorithm [47] was used to classify pixels in forest and non-forest categories with the selected
Sentinel-2 bands and the vegetation and texture indices as input. The output of the classification was
a binary forest/non-forest map of the study area at 10 m spatial resolution. A validation protocol
was specifically designed to carry out an independent validation of the forest mask [42], based on a
stratified random sampling strategy. According to this validation, the forest mask had an accuracy of
0.97 for the study area in 2018. This process was repeated to update the forest mask to 2019 and 2020.

NDVI =
(NIR−Red)
(NIR + Red)

(1)

MSAVI =

(
2·NIR + 1−

√
(2·NIR + 1)2

− 8 ·(NIR−Red)
)

2
(2)
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Homogeneity =
n−1∑

i = 0

n−1∑
j = 0

P(i, j)(i− j)2 (3)

Entropy =
n−1∑

i = 0

n−1∑
j = 0

P(i, j) log P(i, j) (4)

where n is the number of grey levels and P(i, j) defines the entries of the grey-level co-occurrence
matrix.

3.2. Species Identification

The next step (Figure 7, Step 2.2.) was to identify the areas dominated by spruce (i.e., those that
are prone to be attacked by the Ips typographus L.), for which a dominant tree species classification was
carried out [48]. The bi-temporal Sentinel-2 bands and indices used in previous steps were masked with
the forest/non-forest map, selecting only the forest pixels. A random forest model was trained with
polygons containing the main tree species present in the area, namely, Carpinus betulus L., Fagus sylvatica
L., Larix decidua Mill., Picea abies (L.) Karst., Pinus Sylvestris L., and Quercus robur L. Training samples
were obtained joining forest stands with information from the local forest management plan. For
each of the species considered, stands with an abundance of 70% or higher were pre-selected. Finally,
the smaller stands that actually contain the specific tree species were selected for training.

The species attacked by Ips typographus L. (i.e, Picea abies (L.) Karst) were classified with an accuracy
of 0.91 in 2018 according to the cross-validation performed during the model training. This dominant
species map was produced for 2018, 2019, and 2020, as it was made with the forest mask.

3.3. Anomaly Detection and Damage Detection

Once spruce areas were clearly delimited for each year, a new method (Figure 7, Step 3) was
proposed to map the bark beetle damage suffered by the spruce forests during a year (i.e., between a
pair of dates). The first step was to compute vegetation indices able to represent vegetation condition
for the two dates (t0 and t1 for each year, in Table 2). Based on the literature review about the effects of
bark beetle [49], the following vegetation indices were computed for each date: NDVI (Equation (1)),
MSAVI (Equation (2)), normalized difference moisture index (NDMI, Equation (5)), and green leaf area
index (LAIgreen, Equation (6)) [50,51].

NDMI =
(SWIR1−NIR)
(SWIR1 + NIR)

(5)

LAIgreen = 6.753 ·
(RE1−Red)
(RE1 + Red)

(6)

NDVI and SAVI are direct indicators of plant greenness and photosynthetic activity, NDMI is an
indicator of vegetation water content, and LAIgreen is an estimate of the proportion of green leaves per
area. As defoliation is one of the main effects caused by bark beetles [15], LAI has been considered as
one of the key variables in this study. Moreover, we proposed the use of Sentinel-2-derived LAIgreen,
as it considers only the area of green leaves, not only being an indicator of defoliation, but also of leaf
browning [50,51].

To derive the BDA19 and BDA20 products, vegetation indices were masked with the spruce
polygons identified in the dominant tree species map. For each index, a bi-temporal ordinary least
squares (OLS) regression was carried out in order to model the typical behaviour of spruce forest
patches between t0 and t1. The first index was used as the independent variable, and the second one
as the dependent variable in each regression. The results were images of estimated NDVI, MSAVI,
NDMI, and LAIgreen for t1 based on the average trend of spruce forests in the studied period. An error
image was computed for each index using the estimated and real values of the indices in t1. These
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images show the deviations from the expected condition of healthy spruce masses, as it was assumed
that regression would be adjusted to healthy forests and disturbed areas would appear as deviations
from that ideal status. Hence, these error images showed estimates of temporal decrease or increase of
photosynthetic activity, vegetation water content, and number of green leaves.

In order to obtain a single image of vegetation vitality changes (Figure 7, Step 4.1.), all error images
were standardised (i.e., pixel values expressing differences between real and estimated indices were
converted to z-scores). Z-scores (Equation (7)) represent the number of standard deviations between a
value and the population mean.

z =
x− µ
σ

(7)

where µ is the mean of the population and σ is the standard deviation of the population.
The mean of all the standardised images was computed to obtain a single image of average changes

in vegetation vitality. Pixel values in this image may be interpreted as mean standard deviations
from expected NDVI, MSAVI, NDMI, and LAIgreen of undisturbed spruce forest. Finally, these vitality
changes were reclassified (Figure 7, Step 4.2.) to obtain a categorical map of bark beetle damage
(Figure 7, final outputs, Step 4.3.), using the following rule based on z-scores: 0–1 no damage, 1–2 minor
damage, 2–3 moderate damage, and >3 severe damage.

3.4. Ground Truth Data and Validation

To validate the damage products, a ground truth dataset was generated through a field campaign.
An equalized stratified random sampling was used for data collection. As field works are costly, a limit
of 200 points per product was established. To stratify the samples, 50 random points were generated
per class and product, obtaining 200 points per product and 600 in total.

The collected records containing the ID of forest stands, month and year of the cutting, volume,
type of cutting, cause, and area were joined to the forest stand map using the forest stand ID. Different
classes of forest stands representing the degree and year of damage were created using the actual
vitality of the stands based on the information of the records. This modified forest stand map was used
to decide to which class each point belongs in terms of actual damage. This decision was made based
on the occurrence of damage in the given forest stand, not on the occurrence on the exact position
of the point, as the records were focused only at the level of the given forest stand. As dead trees
with inactive bark beetle are no longer harvested in 2019 and 2020, in the case of doubt (no record of
harvesting, but occurrence of damage detected), a field evaluation was also performed.

An accuracy assessment was carried out based on the analysis of the confusion matrix derived
from the damage maps and ground truth points. The overall accuracy was computed for each
product. In order to obtain performance metrics per class, each class was binarised against the rest,
considering as positive the category of interest and negative the sum of all other classes. The following
performance metrics were computed per product and damage category: accuracy (Equation (8)),
precision (Equation (9)), recall (Equation (10)), F1-score (Equation (11)), omission error (Equation (12)),
commission error (Equation (13)), and relative bias (Equation (14)) [42].

acc. =
True positive + True negative

sample size (n)
(8)

prec. =
True positive

True positive + False positive
(9)

rec. =
True positive

True positive + False negative
(10)

F1score =
2·True positive

2 ·True Positive + False positive + False negative
(11)
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OE =
False negative

True positive + False negative
(12)

CE =
False positive

True positive + False positive
(13)

relB =
(False positive− False negative)
True positive + False negative

(14)

As an additional exercise, each point of the ground truth dataset was characterised with the
vitality value of the corresponding year. The objective of this procedure was to study the statistical
robustness of each class and detect possible overlaps or other inconsistences across the categories
defined in the final maps.

4. Results

4.1. Bark Beetle Damage Maps

The BDA product was developed for 2019 (Figure 8) and 2020, while the BDB was produced only
for 2020. Each product had two outputs: (1) a continuous map representing changes in forest vitality
(Figure 8, left panel) and (2) a categorical map showing the areas of biotic damage (Figure 8, right
panel), excluding cut areas for the BDB20 map.

Figure 8. Maps of spruce vitality in 2019 (left), BDA19 (middle), and BDB20 (right). Images:
Sentinel-2 acquired on 2019-08-29 (Spruce vitality 2019 and BDA19) and 2020-07-01 (BDB0) in true color
composition (blue/green/red). BDA, biotic damage A; BDB, biotic damage B.

4.2. Validation Results

The three categorical maps were validated following the methods explained in Section 3.4.
Confusion matrices (Figure 9) show that the algorithm performed as expected, as errors were low
compared with the agreement between the classification maps and ground truth. Errors seemed to be
slightly higher for the BDB20 product.
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Figure 9. Confusion matrices of biotic damage (2019) (left), biotic damage (2020) (middle), and biotic
damage (2020) excluding pixels of dead trees (right).

Overall accuracies were higher than 0.80 for all products (accBDA19 = 0.90, accBDA20 = 0.85,
accBDB20 = 0.81). Metrics per class (Table 4) confirmed the good performance of the algorithms.
BDA products showed a similar performance for different years, with accuracies increasing with the
severity of the attack. Accuracy and F1-score were higher for the severe damage class (acc19 = 0.98,
F1-19 = 0.96, acc20 = 0.95, F1-20 = 0.88), thus confirming that most affected areas were easier to detect.
Nevertheless, cut areas might have influenced this result as they were classified into the severe damage
class. On the other hand, the no damage class yielded lower accuracy and F1-score (acc19 = 0.90,
F1-19 = 0.83, acc20 = 0.86, F1-20 = 0.76). The BDA20 product showed slightly worse results for all
classes (accno-damage = 0.81, F1no-damage = 0.70, accsevere-damage = 0.96, F1severe-damage = 0.90).

Table 4. Performance metrics by product and damage category. BDA, biotic damage A; BDB, biotic
damage B; acc., accuracy; prec., precision; rec., recall; CE, commission error; OE, omission error;
relB, relative bias.

Product Class acc. prec. rec. F1 CE OE relB

BDA19

No damage 0.90 1.00 0.70 0.83 0.00 0.30 0.42

Minor damage 0.95 0.80 1.00 0.89 0.20 0.00 −0.20

Moderate damage 0.97 0.86 1.00 0.93 0.14 0.00 −0.14

Severe damage 0.98 0.92 1.00 0.96 0.08 0.00 −0.08

BDA20

No damage 0.86 0.94 0.64 0.76 0.06 0.36 0.46

Minor damage 0.97 0.86 1.00 0.93 0.14 0.00 −0.14

Moderate damage 0.94 0.80 0.93 0.86 0.20 0.07 −0.14

Severe damage 0.95 0.80 0.98 0.88 0.20 0.02 −0.18

BDB20

No damage 0.81 0.90 0.58 0.70 0.10 0.42 0.56

Minor damage 0.93 0.74 0.95 0.83 0.26 0.05 −0.22

Moderate damage 0.92 0.74 0.93 0.82 0.26 0.08 −0.20

Severe damage 0.96 0.84 0.98 0.90 0.16 0.02 −0.14

Error metrics showed similar behaviour, being higher for BDB20 and lower for BDA19. Commission
errors ranged from 0.08 (BDA19, severe damage) to 0.26 (BDB20, minor and moderate damage) and
were higher than omission errors in all damage classes. The negative relative bias in these categories
confirmed that the algorithm tends to over-estimate damaged areas, although values are not greater
than 0.22. Omission errors were in general very low, between 0.00 and 0.08 for all damage classes in the
three maps. The high recall in these classes (0.93–1.00) confirmed that the algorithms are able to detect
affected areas, missing a small proportion of positive cases. On the other hand, omission errors were
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significantly higher than commission errors in the no damage class, leading to high positive relative
bias ranging from 0.46 to 0.56. This was another signal of over-estimation of damaged areas.

Box plots of forest vitality per class (Figure 10) confirmed the clear correlation between the actual
areas attacked by the bark beetle and the decrease of forest vitality, measured as a standardised mean
of changes in NDVI, MSAVI, NDMI, and LAIgreen. The interquartile range (IQR) represents the data
dispersion and is calculated with the difference between 75th and 25th percentiles. IQR is greater in no
damage (IQRBDA19 = 1.49, IQRBDA20 = 2.22, and IQRBDB20 = 2.63) than in the rest of the categories for
the three products analysed. The overlap between categories decreases with the increase of severity,
with moderate and severe damage not overlapping any other class in the three products. Outliers are
present in the no damage, minor damage, and moderate damage categories, with severe damage being
the only class without outliers in the three maps. This confirms that areas with severe damage are
easier to detect and identify than the other classes, as inferred from performance metrics (Table 4).
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Analysing the three products separately, some differences were noted. Overlap of no damage
and minor damage between the 25th and 75th percentiles was clearer in the BDB20 product. In this
product, there was also overlapping between no damage and moderate damage. However, the severe
damage class was clearly discriminated from no damage and minor damage. This behaviour might
suggest that a more precise discrimination could be achieved by reducing the number of classes.

5. Discussion

The results showed that the biotic damage algorithm worked consistently in different years.
However, accuracy decreased by 5% between BDA19 and BDA20, while in these years, the proportion
of spruce detected as damaged was very similar (7.2% and 7.4% of the total spruce area, respectively).
Hence, although the results for both years were similar regarding performance metrics, a longer time
series analysis would be needed to study the robustness of the method across time and quantify
typical inter-annual variations. In the case of BDB20 (i.e., similar to BDA20, but considering areas
dominated by alive trees of any species at the end of 2020, not only spruce areas), the lower accuracy
(accHD20 = 0.81) may be explained by two main factors. Firstly, this product considers only alive trees,
and minor and moderate changes have greater weight than severe changes compared with the other
products. Hence, the overall metrics tend to be lower in those products where complex intermediate
classes are more frequent than extremes that are easier to identify. Secondly, all species are considered
within the BDB product, and not only spruce, subtle changes in areas dominated by deciduous species,
which are also more sensitive to climate variations (e.g., drought), might have led to a greater confusion
between the no damage and damage classes, as shown in the confusion matrices (Figure 9). However,
the accuracy of the BDB map was high and, more importantly, it confirmed that the high accuracy
obtained for the first two products was not due to the detection of cut areas, thus damage caused by
bark beetle was clearly detected in most cases.
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The three models presented higher commission than omission and negative relative bias in all
damage classes, suggesting a certain degree of over-estimation of damaged areas, as confirmed by
higher recall and lower precision. Assuming that a precise balance between commission and omission
errors was hard to achieve, we prioritised the commission of damaged areas, as the aim of the products
is to help forest managers to optimise the control of the pest. Although this led to high positive bias in
the no damage class (i.e., there was a relatively high omission), accuracy and F1 were still high for
this category. For BDB20, the no damage class presented the worst results with a recall of 0.58 and
an omission error of 0.42. This confirmed that further improvements should be made to avoid the
confusion between bark beetle damage and minor changes in forest vitality caused by other factors
across the different forest types present in the study area. Different solutions might be applied in order
to balance the errors of the no damage category, such as adding more spectral indices or change the
temporal windows. Time series could allow carrying out the damage assessment using a combination
of shorter periods, thus minimising the possible influence of slow changes in vegetation cover.

The results clearly showed that the minor damage class was often confused with no damage,
as the limit between small regular changes in vegetation condition and small, but anomalous changes
is hard to define. This suggests that the models would improve significantly if the no damage category
was removed. Nevertheless, we decided to leave this class because it might be directly related to
green-attack detection [22], which would be essential to design an early detection system [52].

The approach proposed in this article may improve previous attempts to detect bark beetle
infestation with Sentinel-2 data. The ability of Sentinel-2 for this purpose has been tested by different
authors with variable results. Abdullah et al. [22] reported a user’s accuracy of 67% (i.e., agreement
between pixels detected as infestation and ground truth) and a producer’s accuracy of 71% for green
attack detection, while our user’s accuracies were not lower than 74% and our producer’s accuracies not
lower than 95% (CE = 0.26 and OE = 0.05 in the worst model, BDB20) for the minor damage category,
which, as stated before, might correspond to green attack. Moreover, our approach was validated with
field data, while Abdullah et al. [22] derived ground truth information from the visual analysis of aerial
photography, which might have added a certain level of uncertainty into the accuracy assessment. Both
studies coincide in the affirmation that changes in photosynthetic activity, green leaves, and humidity
triggered by bark beetle can be detected from early infestation stages using multispectral Sentinel-2
data. The relationship between LAI maps derived from Sentinel-2 and defoliation caused by bark
beetle infestation has also been confirmed by Barka et al. [33] (r2 = 0.58). An advantage of the
methods proposed in this study compared with the previously mentioned ones is that it does not
require training data to detect bark beetle infestation, as the algorithms used unsupervised methods
based on a statistical change detection approach. Zimmermann and Hoffmann [23] used a change
detection approach to detect areas affected by Ips typographus in Germany and Switzerland. Although
they obtained low commission errors for the positive class (CE = 0.03–0.12 versus CE = 0.08–0.26 of
our algorithm), omission errors were substantially higher than in our study (OE = 0.48–0.60 versus
OE = 0.00–0.08), leading to a high bias in the final results.

Regarding very high resolution, Worldview-2 showed potential to discriminate green attack from
healthy trees [53]. However, the spectral differences were so small that the accuracy of random forest
classification and logistic regression did not exceed 70%. RapidEye data have been used to map
green attack, nearly equivalent to our minor severity class, reaching a kappa coefficient of 0.51 [54].
In comparison with these studies, our performance metrics yielded higher values, with an accuracy of
93% for the worst model. Nevertheless, it must be noted that the spatial resolutions of multispectral
Worldview-2 (1.84 m at nadir) and RapidEye (6.5 m at nadir) allow the detection of smaller groups or
even individual trees when compared with Sentinel-2. Although bark beetle damage mapping has
been carried out using UAV very high resolution imagery with promising results [24,27–29], they rely
on planned flights, which usually require high costs and cannot be repeated frequently. The value of
using Sentinel-2 data is the free cost of imagery at relatively high spatial resolution (10 m), but mainly
the revisit time [15] of 2–3 days at mid-latitudes. Relatively high performance metrics have also been
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reported using SAR data, with accuracies of 0.65–0.88 for L-band data [30] and kappa of 0.23 for green
attack detection using X-band [55]. However, SAR-based detections were highly dependent on local
environmental conditions [30]. The combination of very high resolution multispectral RapidEye and
TerraSAR-X data yielded a kappa coefficient of 0.74, considerably improving the results based solely
on optical and SAR data [55]. The results shown in this study are likely to improve if SAR data (e.g.,
Sentinel-1) are included in the models.

Using remote sensing products, we also need to consider that tree damage stages do not always
correspond to the colour changes in the crown. In extreme cases, it occurs that the tree bark is totally
peeled, the bark beetle has completed its development and flew out, while the crown is still green.
This fact complicates the damage assessment with remote sensing optically derived products.

The next point of discussion focused on the local expertise of how the products developed in
this study overcome some of the limitations of other datasets currently provided at the national level,
as is the case of Czech Republic. Czech Hydrometeorological Institute provides a map of the sums
of effective temperatures above 7.5 ◦C, knowing that the population dynamics of bark beetle are
significantly affected by the weather, especially air temperatures, which determine the swarming and
the number of generations. As the bark beetle swarms when temperatures above 7.5 ◦C sum up to
540 ◦C [56], this temperature map is intended to help forest managers in planning and prevention
activities by estimating swarming dates. Even when the temperatures map is somewhat useful for
managing spruce forests, there are other factors affecting the ecology of bark beetle that are not
considered within this map. Moreover, it does not have the intention of being used for damage
assessment purposes.

Next, also based on local expert knowledge, we assessed the monitoring system for the detection
of salvage cutting and standing dead wood using Planet images established in the Czech Republic since
2018 (see Section 1) in comparison with the products produced and validated here. The Planet-based
dataset is updated four times a year [57]. Although this product is useful to control dead trees and
subsequent clear-cuts caused by bark beetle, it does not provide any information about the status of
trees in intermediate infestation phases (i.e., it is equivalent to a binary classification detecting only
dead trees). Contrarily, our bark beetle damage maps provide insights on the level of affection of
different areas, even those dominated by trees that are still alive, as proven with BDB20. This suggests
that the proposed method is able to improve Planet-based very high resolution maps by providing
estimates of areas under red and green attack phase. Moreover, the costs of maps based on Sentinel-2 is
lower because of the free availability of imagery. Nevertheless, the methods proposed here are limited
to mapping relatively large areas, as the spatial resolution of 10 m does not allow detecting single
trees affected by bark beetles. Hence, it is necessary that several trees within the pixel present enough
spectral change to be detected as anomalous. The same limitation was found by other authors [23],
still making these kind of methods useful for intermediate landscape scales.

Further research is still to be made on the field of bark beetle attack forecasting models, which are
being highly demanded by forest managers [52]. Although the methods proposed here could be used
for short-term forecasting because of their ability to detect areas with minor damage that might be in the
first infestation stages, there is no evidence of a clear correlation between these areas and green attack
phase. Moreover, future models should include climate data as input in order to perform mid-term
forecasts allowing to mitigate the negative effects of this pest before its complete development.

6. Conclusions

In this study, a method was proposed to map bark beetle damage from satellite imagery. Using
Sentinel-2 images as input, two multi-temporal regression models were built to detect and map the
severity of bark beetle outbreaks on spruce forests in the Czech Republic at 10 m spatial resolution.
The first model (BDA) was applied to map the damage occurred in years 2019 and 2020. The second
model (BDB) was applied to map the bark beetle damage in 2020, in order to map only changes in
stands dominated by alive trees. Both products were validated using a ground truth dataset generated
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through a field campaign and forest management plans. Different performance metrics were computed
to assess the quality and errors of the three maps produced. Finally, forest vitality used to develop the
biotic damage layers was compared against ground truth to study the overlaps between classes.

All products showed good performance, with accuracies higher than 0.80. The severe damage class
yielded the best performance metrics in all products (acc > 0.95, F1 > 0.88), while the no damage yielded
the worse metrics (acc > 0.81, F1 > 0.70). Commission errors were higher than omission errors in all
positive damage classes, leading to a high relative bias in the no damage class (relB = 0.42–0.46). BDA
products showed slightly better results than BDB (accBDA19 = 0.90, accBDA20 = 0.85, accBDB20 = 0.81)
because of the easier identification of areas with clear-cuts or dominated by dead trees. However,
the performance metrics yielded by BDB proved that the algorithm was able to identify areas affected
with low severity unaffected by dead trees or clear-cuts, suggesting that some areas were correctly
mapped at red and green attack phases. Changes in forest vitality grouped by ground truth classes
confirmed that pixels were easier to classify in the correct class for the severe and moderate damage
classes. Contrarily, the existing overlap of vitality values between classes of no damage and minor
damage highlighted the difficulty of clearly discriminating infested areas with subtle signals of decay.

Comparing the proposed methods and outputs with the datasets currently used in the
Czech Republic for bark beetle damage mapping, the products presented several advantages. Firstly,
the cost is relatively low as it is based on freely available Sentinel-2 images. Secondly, the biotic
damage maps provide information about damage intensity, suggesting that it might be used not only
for damage assessment, but also to help forest managers in planning their prevention and mitigation
activities. Biotic damage products can be set up for any location to monitor the forest vitality to derive
regular maps as needed, for example, every month. Nevertheless, the presented methods are not
valid to identify individual affected trees given their spatial resolution. Future research should be
carried out to confirm the detection at the green attack phase and complement the existing studies
with forecasting products.
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