
1687

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS

Volume 65 174 Number 5, 2017

https://doi.org/10.11118/actaun201765051687

USING HMM APPROACH FOR ASSESSING 
QUALITY OF VALUE AT RISK ESTIMATION: 

EVIDENCE FROM PSE LISTED COMPANY

Tomáš Konderla1, Václav Klepáč1

1 Department of Statistics and Operation analysis, Faculty of Business and Economics, Mendel University in Brno, 
Zemědělská 1, 613 00 Brno, Czech Republic

Abstract

KONDERLA TOMÁŠ, KLEPÁČ VÁCLAV. 2017. Using HMM Approach for Assessing Quality of Value 
at Risk Estimation: Evidence from PSE Listed Company.  Acta Universitatis Agriculturae et Silviculturae 
Mendelianae Brunensis, 65(5): 1687–1694.

The article points out the possibilities of using Hidden Markov model (abbrev. HMM) for estimation 
of Value at Risk metrics (abbrev. VaR) in sample. For the illustration we use data of the company listed 
on Prague Stock Exchange in range from January 2011 to June 2016. HMM approach allows us to 
classify time series into different states based on their development characteristic. Due to a deeper 
shortage of existing domestic results or comparison studies with advanced volatility governed VaR 
forecasts we tested HMM with univariate ARMA‑GARCH model based VaR estimates. The common 
testing via Kupiec and Christoffersen procedures offer generalization that HMM model performs 
better that volatility based VaR estimation technique in terms of accuracy, even with the simpler HMM 
with normal‑mixture distribution against previously used GARCH with many types of non‑normal 
innovations.

Keywords: Hidden Markov model, Christoffersen duration test, Kupiec test, Value at Risk, 
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INTRODUCTION
The increased level of financial or market risks 

and uncertainties is leading towards continuous 
development of more and more sophisticated 
methods serving for more accurate risk 
measurement and its management. This process 
is in motion via financial institutions, regulators 
and academic public. One of the well‑established 
approaches created for this purpose is the used 
metric Value at Risk (abbrev. VaR) introduced in 
1993, which measures the maximal possible loss on 
the given confidence level during the specific time 
period.

The previous articles, like Krause (2003) shown 
that VaR is not unproblematic to use, it is not 
a coherent risk measure, its estimation is subject to 
large errors, the estimate is downward biased, and 
these shortcomings can be exploited by individuals 
within the company as well as the company 
as a whole. The VaR estimate gives only a risk 

assessment of the investment under normal market 
conditions. Extreme events like a financial crashes, 
or systemic failures, are really problematic to 
capture.

It does not indicate potential losses, and as a result 
is flawed, even on its own terms. Its dependence on 
a single quantile of the profit and loss distribution 
implies it is easy to manipulate reported VaR with 
specially crafted trading strategies. For regulatory 
use, the VaR measure may give misleading 
information about risk, and in some cases may 
actually increase both idiosyncratic and systemic 
risk. The basic statistical properties of market data 
are not the same in crisis as they are during stable 
periods; therefore, most risk models provide very 
little guidance during crisis periods. In other 
words, risk properties of market data change with 
observation as Daníelson (2002) stated.

Hidden Markov Models (abbrev. HMM) can be 
classified under the more general classification of 
Markov regime‑switching models, wherein the m 
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states of the HMM correspond to the m regimes of 
the regime‑switching models.

HMMs were previously mostly found among 
others in fields as biophysics (ion channel 
modeling), earth and environmental sciences 
(wind direction, climate change), temporal pattern 
recognition (facial, gesture, speech, handwriting, 
etc.), engineering (speech and signal processing), 
bioinformatics (biological sequencing). Its main 
use is to describe nonlinear trends in the time 
series and classify different regimes according 
to characteristics and variability of time series. 
A further simplification that is adopted by this paper 
is to assume that the distribution in each regime is 
that of the Gaussian distribution.

The remainder of this article is structured as 
follows: section Motivation describes the aim of 
the paper, section Material and Methods presents 
the data and econometric techniques used for 
capturing Value at Risk measures, the next sections 
present and discuss the results. Conclusions are 
presented in last section.

Motivation and Contributions
The aim of this paper is to test the ability in VaR 

estimation, as it is important metric in financial 
industry, with HMM model in comparison to 
selected univariate ARMA(1,1)‑GARCH(1,1)‑GJR1 
models in similar way to Khaled et al. (2016) who 
backtested HMM and GARCH models with 
different distributions. Our data consists of one 
company for better readability of results (output 
could be generalized even for portfolio case) listed 
on the Prague Stock Exchange (PSE): ČEZ, a. s. from 
January 2011 to June 2016.2

Similarly to the work of Angelidis, 
Benos & Degiannakis (2004) or Klepáč & Hampel 
(2015) this paper uses the conditional and 
unconditional coverage framework for VaR testing. 
The results supply literature with at least two specific 
contributions: we tell if there exists significant 
difference in VaR estimates between static univariate 
volatility based model and HMM approach.

We used data of ČEZ, a.s. company, when other 
authors (see Khaled et al. (2016) mostly used data 
of more traded companies – from our previous 
knowledge (like in Klepáč & Hampel (2015) 
or in Kresta (2011)) we know that is possible to 
use univariate or multivariate models even for 
portfolio VaR estimation with stable or variable 
portfolio weights. Presented results then offer 
heavier concentration (unpublished for PSE listed 
company) on the HMM with respect to particular 
univariate VaR estimation coherence.

MATERIAL AND METHODS
We process data of time series of closing stock 

prices for company: ČEZ, a. s. company, which 
were obtained through Patria Online database, 
e. g. it contains data from Prague XETRA system, 
denominated in CZK. In Tab. I are shown the basic 
statistics of logarithmical daily returns. We use 
data for the time period from January 2011 to June 
2016. We also present returns stream consisting of 
mentioned company, see Fig. 1 in Results section.

Because of the great importance of the quality 
of loss forecasts in financial industry there were 
developed backtesting (we use these methods with 
in sample data) procedures which validate use of 
the VaR estimators, see Christoffersen (1998) and 
Kupiec (1995) for back testing of results.

Representation of volatility models
As description about creating ARMA‑GARCH(1,1) 

type model to establish univariate volatility models 
with mean μt process can be used

, t t t tX µ h z= +

where zt is draw from inverse cumulative distribution, 
ht is conditional variance, μt is conditional mean 
process, Xt is a one dimensional vector of returns. 
In this paper we use GARCH(1,1)‑GJR specification 
according to Glosten, Jaganntahan a Runkle (1993) 
for ht
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Representation of Hidden Markov Model
A Hidden Markov Model (HMM) is a statistical 

model of a sequence of observed random variables 
whose distribution depends on another sequence of 

1 In the text there is for a better readibility often used abbreviation ARMA‑GARCH without the order of the univariate 
model.

2 The computations were performed with R version 3.1.0 on basic data set of 1380 observations for particular time series 
of log returns.

I: Summary statistics for logarithmical daily returns

Statistics Values

Minimum −0.1285

1st Quartile −0.01292

Median 0.000395

Mean −0.00094

3rd Quartile 0.0121

Maximum 0.08194
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underlying unobserved random variables, the latter 
being governed by a Markov process. A Markov chain 
is useful when we need to compute a probability 
for a sequence of events that we can observe in 
the world. In many cases, however, the events we 
are interested in may not be directly observable in 
the world. A hidden Markov model (HMM) allows 
us to talk about both observed Hidden Markov 
model events (like returns that we see in the input) 
and Hidden events (like probabilities of particular 
returns regime) that we think of as causal factors in 
our probabilistic mode.

Rather, we can only observe some outcome 
generated by each state. Formally, an HMM is 
a Markov model for which we have a series of 
observed outputs x = {x1; x2;…; xT} drawn from 
an output alphabet V = {v1; v2; …; v|V }, i. e. xt ∈ V; 
t = 1..T. As in the previous section, we also posit 
the existence of series of states z = {z1; z2; …; zT}, 
drawn from a state alphabet S = {s1; s2; … s|S }, zt ∈ S; 
t=1..T but in this scenario the values of the states are 
unobserved. The transition between states i and j will 
again be represented by the corresponding value in 
our state transition matrix Aij.

We also model the probability of generating 
an output observation as a function of our 
hidden state. To do so, we make the output 
independence assumption and define 
P(xt = vk|zt = sj) = P(xt = vk|x1; … ; xT; z1; … ; zT) = Bjk. 
The matrix B encodes the probability of our hidden 
state generating output vk given that the state at 
the corresponding time was sj.

In an HMM, we assume that our data was 
generated by the following process: i. e. the existence 
of a series of states ~z over the length of our time 
series. This state sequence is generated by a Markov 
model parametrized by a state transition matrix A. At 
each time step t, we select an output xt as a function 
of the state zt. Therefore, to get the probability of 
a sequence of observations, we need to add up 
the likelihood of the data given x



 every possible 
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In the HMM there is a probability of transitioning 
between any two states, which holds true in our 
paper. Such an HMM is called a fully connected 
or ergodic HMM. Sometimes, however, we have 
HMMs in which many of the transitions be Bakis 
network states have zero probability. Bakis HMMs 
are generally used to model temporal processes like 
speech. Other technical details about parameters 
estimation are described in Baum (1966).

Benchmark of results
To estimate VaR model we should proceed in steps 

provided by Khaled et al (2016) and Klepac and 
Hampel (2015).
• Fit of univariate ARMA(1,1)‑GARCH(1,1)‑GJR 

model and estimation of VaR. Various 
combinations of the values p and q in GARCH(p, 
q) model have only minor influence on the values 
of information criteria – in the order of magnitude 
of units of percents.

• Fit of HMM model for different number of states.3

• Evaluation of results for classification of different 
regimes by minimal AIC and BIC values.

• Simulation of 10 000 average returns by 
normal‑mixture model density. Weighting selected 
returns (VaR quantiles) by stationary probabilities 
from HMM model (these probabilities are 
changing over time). Stationary probability of each 
state is defined as a number of time units in which 
the state remains the same.

• Estimation of VaR rates for 5th and 1st quartile of 
cumulative distribution function as 95 % and 99 % 
VaR.
VaR is the 100(1−α)th quantile of the returns 

cumulative distribution function. As for 
the conditional approach, the VaR would be 
the 100(1−α)th quantile of the distribution of 
the predicted value X.
• Benchmark of the results by Kupiec and 

Christoffersen tests.
Because of the great importance of the quality of 

loss estimations and forecasts in financial industry 
there were developed backtesting procedures 
which validate use of the VaR estimators. Within 
the backtesting procedure see Christoffersen (1998) 
for conditional approach and Kupiec (1995) for 
unconditional approach. Unconditional methods 
count the number of exceptions or violations, in 
point where the realized returns (loss) fall below 
VaR band. Conditional methods tests if the duration 
time between VaR violations is independent and 
without the clusters. This test tells us if there are 
some consecutive exceedances for some time 
interval. But based on particular null hypothesis 
of Christoffersen test we can access unconditional 
property too.

RESULTS
After the calculation of price logarithmical 

difference, the estimate is performed via 
ARMA(1,1)‑GARCH(1,1)‑GJR for five different 
combinations of model settings. The value of 
the information criteria is fundamentally influenced 
by the distribution of the variance process. From 
this point of view, the highest quality models 
contain innovations from Student‑t distribution. 

3 GARCH(1,1)‑GJR performed better than the others (i. e. EGARCH, standard GARCH etc.) in our previous research.
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Otherwise, the normal distribution cannot be 
preferred in statistical reasoning for any of the tested 
models. The partial changes in parameters values 
have mostly impact on the t‑values and the full 
statistical verification of tested model. The testing 
of applicability and selection of particular HMM 
models via minimal values AIC a BIC points to 
several common phenomena, see Tab. II, Tab. III and 
Tab. IV for quantitative results. Due to the results we 
could concern the 4‑state HMM with minimal AIC 
and BIC values.

Tab. III shows that there is great probability that 
the time series in State 1 would remain in the same 
state – from one day to another. The highest 
probability of change between two regimes is from 
State 2 to State 3, and from State 2 to State 4. Contrary 
to that it is highly unlikely to observe change from 
State 1 to State 2 (from State 4 to State 3 and vice 
versa).

The EM algorithm gives the values of the estimates 
of the parameters for the 4‑state HMM, see Tab. V.

Four normal density functions (weighted by 
the stationary probabilities in Tab. V) that make 
up fitted mixed distribution. The resulting 
normal‑mixture density for the return x is given

( ) ( )
( )
( )
( )

0.1199 ; 0.0099, 0.0391

0.5238 ; 0.0043, 0.0101

0.2595 ; 0.0283, 0.01222

0.0968 ; 0.0183, 0.0117

f x x µ

x µ

x µ

x µ

φ σ

φ σ

φ σ

φ σ

= = = +

+ = − = +

+ = − = +

+ = =

where µ and σ are parameters of returns 
distribution. Fig. 1 can help us interpret the four 
different regimes suggested by the HMM. The first 
state refers to those times where volatility rose.

On the Fig. 1 we watch the development of 
the logarithmical yields from January 2011 to June 
2016. On the representation of states, we see that 
extreme positions, that are state 1 as negative and 
state 4 as positive, are in periods with significant 
market oscillations. It is certainly true, current 
market oscillations are bounded by states 2 and 3. So 
the values following out of the equation are evident 
and the most usual state is the second one.

Value at Risk estimation and testing of results
For details about the VaR exceedance and visual 

fit to empirical returns with testing results, see Fig. 2 
and Fig. 34, Tab. VI and Tab. VII.

4 VaR estimate is presented as a colored line. Daily returns are visualized as black lines.

II: Evaluation of HMM model – selection of best fitting specification

Number of states logLik BIC AIC df

2‑state HMM 3413.96 −6777.3 −6813.9 7

3‑state HMM 3464.18 −6827.1 −6900.4 14

4‑state HMM 3502.25 −6838.2 −6958.5 23

5‑state HMM 3481.67 −6805.8 −6914.4 34

III: Transition matrix for 4‑state HMM model

From / To State 1 State 2 State 3 State 4

State 1 76.17 % 3.76 % 11.84 % 8.23 %

State 2 0.00 % 73.48 % 7.57 % 18.95 %

State 3 10.39 % 42.30 % 47.30 % 0.01 %

State 4 6.91 % 34.05 % 0.03 % 59.01 %

IV: Model parameters for each state

State Intercept Standard deviation

State 1 0.0099 0.0391

State 2 −0.0043 0.0101

State 3 −0.0283 0.0122

State 4 0.0183 0.0117

V: Stationary probabilities for 4‑state HMM model

States Stationary probability

State 1 11.99 %

State 2 52.37 %

State 3 25.95 %

State 4 9.67 %
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1: Realized returns and four different states across time (from January 2011 to June 2016)

2: VaR estimation by 5 GARCH based models (normal, Student‑t, GED, G. hyperbolic and NIG distributions) and HMM model for 95 % 
confidence level and realized returns (from January 2011 to June 2016)
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According to the Kupiec and Christoffersen test 
the best model for fitting actual risk levels is simple 
HMM with 13 violations. Although the Kupiec test 
does reject ARMA(1,1)‑GARCH(1,1), its numerical 
values are above the coverage rate for 95 % 
confidence interval. After the hypothesis testing we 
know that there exists only one suitable modelling 
approach for selected confidence level: HMM 
method for univariate time series.

Kupiec’s unconditional coverage test looks at 
whether the amount of expected versus actual 
exceedances given the tail probability of VaR 
actually occur as predicted, while the conditional 
coverage test of Christoffersen is a joint test of 
the unconditional coverage and the independence 
of the exceedances. Both the joint and the separate 
unconditional test are reported since it is always 
possible that the joint test passes while failing either 
the independence or unconditional coverage.

DISCUSSION
HMMs were not previously used for VaR 

estimation with Czech listed companies, so we have 
not directly ability to compare results with GARCH 
based VaR estimates. Thus the main contribution 
lies in concerning statistically evaluated results for 
unique experimental setting.

Gaussian based models often perform to larger 
extent poorly, mainly due to the fact that the returns 
are not coming from Gaussian probability 
distributions. But in this case the HMM with 
normal‑mixture model performs better than 
a ARMA(1,1)‑GARCH(1,1)‑GJR with all of the tested 
innovation distributions (Student‑t, NIG, Normal, 
GED, hyperbolic). The reason of quality results is 
the mixing of distributions with the different input 
parameters. Though it is widely accepted that asset 
returns are not normally distributed, a mixture of 
Gaussians that results from HMM models do exhibit 
the skewness and leptokurtic characteristics (high 
peaks and fat tails) of such returns.

But so far from the actual results (i. e. Klepáč 
and Hampel 2015) we in general propose 
ARMA‑GARCH‑GJR with Student‑t, GED or NIG 
distribution as appropriate way to forecast portfolio 
VaR when we won’t work with dependence between 
return streams. After the testing we can take that as 
possible fact. But obviously the obtained results 
could be further enhanced via testing of accuracy on 
different levels of significance or in forecasting out 
of sample for different time horizons.

3: VaR estimation by 5 GARCH based models (normal, Student‑t, GED, G. hyperbolic and NIG distributions) and HMM model for 99 % 
confidence level and realized returns (from January 2011 to June 2016)
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CONCLUSION
This contribution deals with the application of volatility models and Hidden Markov model with 
normal‑mixture densities and its testing when estimating Value at Risk based on the data of ČEZ, 
a. s. company. Particular time interval of data used is from January 2011 to June 2016. The variant 
comparison of five combinations of univariate ARMA‑GARCH models led us to the conclusion that 
the simplest ARMA‑GARCH fits the data well graphically. The results for HMM VaR point at the less 
ability to capture the current fluctuations, but provide the limits of VaR metric, which statistically 
correspond better to the level of significance.
The results according to testing indicate the underestimation of the risk level for almost all of 
the model approaches, with exception of HMM model. Kupiec and Christoffersen test proposed 
that the HMM model is efficient in capturing VaR metric. This model is also the only case of model 
in which the violations are independently distributed in time. The outputs of this research can be 
further developed via testing of accuracy on different levels of significance in terms of out of sample 
forecasting. Despite its simplicity, HMMs perform fairly well in modelling processes with varying 
system‑behavior.

VI: Evaluation of estimation quality according to Kupiec and Christoffersen tests (95 % confidence level)

Findings ARMA‑GARCH and distribution type
HMM

NIG GED NORMAL STUDENT‑T HYPERBOLIC

Expected exceedances 69 69 69 69 69 69

Realized exceedances 170 156 162 172 284 35

Kupiec test x x x x x x

Christoffersen test x x x x x x

VII: Evaluation of estimation quality according to Kupiec and Christoffersen tests (99 % confidence level)

Findings ARMA‑GARCH and distribution type
HMM

NIG GED NORMAL STUDENT‑T HYPERBOLIC

Expected exceedances 13 13 13 13 13 13

Realized exceedances 59 58 58 79 111 13

Kupiec test x x x x x ok

Christoffersen test x x x x x ok
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