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Abstract
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Registries are indispensable in medical studies and provide the basis for reliable study results 
for research questions. Depending on the purpose of use, a high quality of data is a prerequisite. 
However, with increasing registry quality, costs also increase accordingly. Considering these time 
and cost factors, this work is an attempt to estimate the cost advantages of applying statistical tools to 
existing registry data, including quality evaluation. Results for quality analysis showed that there are 
unquestionable savings of millions in study costs by reducing the time horizon and saving on average 
€ 523,126 for every reduced year. Replacing additionally the over 25 % missing data in some variables, 
data quality was immensely improved. To conclude, our findings showed dearly the importance of 
data quality and statistical input in avoiding biased conclusions due to incomplete data.

Keywords: Benford law, data source quality, missing‑at‑random mechanism, missing data problem, 
reducing study costs

INTRODUCTION
Registries play an irreplaceable role in medical 

studies, where they are essential for the reliability 
of study results for arbitrary research questions. 
The quality of data in registries may have extreme 
effects on the significance and meaningfulness of 
results. Therefore, in particular in data for sensitive 
uses, such as pharmaceutical data, the highest 
reliability is required. Data from patients with any 
disease are collected until enough data is available 
to achieve reliable study results. Depending on 
the research question and the percentage of missing 
key values, in some cases volunteers are even 
interviewed after 10 years and data collected, until 
the registry has a high degree of reliability. However, 
with increasing registry quality, the costs increase 
accordingly.

In a data matrix (or a registry), data concerning 
specific subjects share specified characteristics or 
information. These for example can be patients 
with a particular disease (patient registry), customer 
answers to a product (market research), or a sales 

related registry (selling strategy). A registry is an 
important tool for investigating and evaluating 
specific outcomes of a research question. A registry 
can be seen as a list of data entries in which each 
entry represents an individual case or person 
with defined components of specific information. 
However a data matrix can be an abstract or 
a sample of a registry, where representativeness is 
assumed (e.g. study data). Depending on the aim 
of a study, data are not always collected in the same 
way and in this case the completeness of missing 
data is crucial to high quality as well as correct data 
acquisition without any manipulation for reliable 
study outcomes. Especially in pharmaceutical 
studies, only high quality data registries are trusted 
(Rothenbacher et al., 2015).

As a consequence, study periods are often 
prolonged with the aim to extend the records in 
order to gain more complete data sets, see Uenal et al. 
(2014a). However, these data sets might already have 
been of good quality, and only missing a few small 
pieces of information (e.g. the patient has not stated 
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certain questionnaire items of high importance or 
clinical measurements were not completed). Thus, 
these are pieces of information that can be estimated 
statistically and need not to be collected in a new 
study, which would be expensive.

This means, that theoretically well‑planned 
registries would guarantee high quality, but are 
never achieved to a lack of the funding that would 
be necessary for continuing the registry‑based 
study and compensating for missing data and 
cases. In these situations, statistical input could 
solve the problem. In order to evaluate this, 
distributions are tested (Benford distribution and 
original distribution of the variables). A simulated 
low‑quality registry created from the same source 
will be compared to measure the quality evaluation 
as well as improvements and cost differences. For 
example Glicklich et al. (2014) set up guidelines 
concerning registry quality (“Registries for 
Evaluating Patient Outcomes: A User’s Guide”), 
but these suggestions do not cover the data quality 
and manipulations (intended or unintended) 
themselves.

The objective of this work is to investigate the cost 
advantages by comparing the quality of statistical 
input to costs. We estimate the cost advantages of 
applying statistical tools to existing registry data 
and evaluate the quality as well as the reliability 
for possible study results (instead of obtaining 
new data by prolonging the study period). Further 
we measure the quality of data (low to high) using 
Benford’s Law (BL). We use a published data matrix 
containing gastric cancer patients from Ma et al. 
(2015).

Data Quality Problem
Although the overall problem of data matrix 

quality is discussed in several publications, they 
mainly focus on the issues of incomplete and 
missing data in a registry. If they deal with cost 
effectiveness, then it is only examined from 
a general financial point of view. Ward discusses 
the advantages of cost probability by using statistical 
methods but relates them to the fields of accounting 
and product costs (Ward, 1968). The same is 
attempted by Yewdall et al. (1969). Zhang et al. (2007) 
discuss cost‑effectiveness by using estimation of 
data instead of carrying out expensive research. 
Still his approach does not deal with the aspect of 
quality; quality loss is only mentioned as a problem 
in all these approaches. Bankhofer and Praxmeier 
(1998) discuss the missing data problem in market 
research, but their main focus is on the reasons 
for missing data. Dinh and Zhou (2006) as well as 
Bansal et al. (2008) describe missing data in cost 
sensitive areas in the business and health sectors, 
but they do not examine the quality aspect.

However, there is no publication yet that combines 
all of these aspects with regard to improving data 
quality and saving costs (Silvia et al., 2014; Enders, 
2010; Lewis, 2008). Thus what is missing in these 
publications is an analysis of the cost savings when 

using statistical methods to evaluate quality instead 
of trying to improve low quality data by prolonging 
the study and collecting more data, which is a very 
expensive and time‑consuming process.

A high quality registry is essentially a complete 
registry, i.e. without any missing information and 
a high percentage of completeness (assumption that 
all patients were collected), where data has been 
collected consistently for all patients to international 
validated standards (Glicklich et al., 2012 and 2014; 
Nagel et al., 2012 and 2013; Uenal et al., 2014a). 
Accordingly, a data matrix is assumed that has 
complete observations. Missing data and human 
coding mistakes as well as data manipulation 
possibilities should be conscientiously managed 
from the beginning of data collection. Confirmation 
of high quality, data accuracy and completeness is 
expected.

Here the problem arises that despite the careful 
planning of a study and its duration as well as 
well‑organised data collection to international 
standards, doubts concerning the quality of data can 
remain. The reason for this is the lack of awareness 
that there is the possibility of investigating quality 
(Tam et al., 2007; de Vocht and Kromhout, 2012; 
Judge and Schechter, 2009; Spencer, 1985).

Aside from the completeness of a data matrix, 
the aspect of data quality and data collection 
is also hugely relevant. Spencer discusses 
the decision‑theory of different scenarios 
concerning the level of data quality. While he 
constructs different hypothesis and cases, they all 
rely on the assumption that data quality is needed 
at that level where “the benefit minus the cost is 
largest”, see Spencer (1985), p. 565. A number of 
publications use the BL stated in Benford (1938) for 
exploring distributions and data set applicability 
in different contexts. Leemis et al. (2000) confirm 
the relevance of Benford in survival distribution 
research, while Judge and Schechter (2009) discuss 
the usability for biased conclusions in survey data 
and the Archambault and Archambault (2011) 
explore the BL in management area.

According to Tam et al. (2007), BL is also usable 
for data fraud detection. A deeper explanation 
in the field of data quality detection in medical 
studies applying the BL is described by de Vocht 
and Kromhout (2012). Wang (1996) as well as Lee 
and Strong (2003) discuss the importance of data 
quality and the consequences of poor data quality. 
Cappiello et al. (2003) examine the relevance 
of time for data quality. Lee (2003) emphasises 
the importance of context variables for data quality. 
In contrast to Tam et al. (2007), Cecchini et al. (2010) 
examine fraud detection in data sources by using 
the Beneish Law, see Beneish (1997) and (1999).

Maritz (2003) describes the importance of data 
management systems as an organisational resource 
and in handling archives. Esteva et al. (2013) discuss 
practical ways of data mining and working with large 
archives.
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In the case of the missing data of observed 
patients in a data set to be further analysed, the ideal 
case would be that the data are missing completely at 
random (MCAR) and that they lie in an appropriate 
range. More than 25 % missing relevant data in 
a registry of all data entries could also be a basis for 
biased study results, when ignoring or not handling 
them appropriately (Uenal et al., 2014b).

When ensuring a high quality registry it is 
important to make sure that the data collection 
complies with international standards 
(Glicklich et al., 2012 and 2014; Nagel et al., 2012; 
Nagel et al., 2013; Rothenbacher et al., 2015) to avoid 
bias already in the phase of data collection and 
that a high level of registry coverage is guaranteed 
(Uenal et al., 2014b; Bishop, 2007; Williams, 2002).

MATERIALS AND METHODS

Example Registry Data Set: Solitary Lymph 
Node Metastasis in Gastric Cancer

The example used of registry data of gastric 
cancer patients is a data set of a study conducted 
at the Cancer Center of Sun Yat‑Sen University in 
South China. The aim of the study was to examine 
the clinical significance of risk factors towards 
solitary lymph node metastasis (SLM) in gastric 
carcinoma (Ma et al., 2015). In total, 385 patients with 
gastric carcinoma who had a D2 lymphadenectomy 
were included into the research. To validate 
the study results, data from the Sun Yat‑Sen 
University Hospital were compared.

The retrospective research took place from 
July 2000 to July 2012. The researchers used 
clinicopathological data of gastric cancer patients. 
In total 82 (22.3 %) patients were observed with SLM 
and 303 (78.7  %) patients with NLM, respectively. 
Follow‑up visits were made at an average of 52.3 
(with SD equal 25.9) months. In their study, they 
could show that SLM is an independent risk 
factor for gastric cancer and there was no survival 
difference between the two SLM groups (skip / no 
skip). We will work with following variables: CRP 
(C‑reactive protein) level, CEA (carcinoembryonic 
antigen) level, CA‑199 level and CA‑724 level (the 
name CA is derived from commercial carbohydrate 
antigen sets). These variables belong to so‑called 
tissue‑specific tumor markers obtained from 
blood. Further medical details can be studied in 
Ma et al. (2015). The volume and contents of the data 
set is a good basis for investigating the quality 
as well as further scenarios of situations (for 
instance: the accuracy of missing data estimation, 
reduced study duration in case‑control studies and 
registry quality evaluation).

Methods to Detect Registry Data Quality
There exist several methods to detect the data 

quality of a study (or registry). Researchers use data 
of their study for further analysis and deal with 
the subjects of quality in data collection phase as well 

as when working with collected data. Unfortunately, 
there are more factors to consider than proper data 
collection. Awareness of other factors seriously 
affecting the study results of any research question 
is not taken seriously enough. Intended or 
unintended mistakes often remain undetected in 
studies. The more sensitive the purpose of the data 
use (health, medical and pharmaceutical research, 
etc.), the more important is the quality, see Spencer 
(1985) and Rothenbacher et al. (2015).

In this work, we only refer to the BL and how to 
handle missing data and its reliability. The CARE 
method is an alternative possibility, when several 
data sources are provided. While the CARE method 
would require data sets where a case is uniquely 
identified (e.g. ID) and the same case ID naturally 
occurs in other data sources, so one could estimate 
the total number of missing cases in a registry 
without any population parameter information, but 
only by intersection information (set theory). This 
method is appropriate when a uniquely labelled case 
can be re‑identified in the other data sources. Then 
the completeness of a registry can also be estimated 
regarding quality questions of new implemented 
registry studies, when completeness is doubtful due 
to hidden cases or not discoverable (i.e. low survival 
of cases of a rare disease, see Uenal et al. 2014a).

Every method, especially in certain situations, 
has advantages as well as disadvantages. Referring 
to a single data matrix and observation of several 
variables, the method cannot be applied, since we 
do not have varied data sources. In this case, the BL 
is a good tool to investigate data quality and to detect 
human coding mistakes, imprecise answers or 
poorly designed questionnaires (Bredl et al., 2008; 
Benford, 1938), missing observations (i.e. complete 
case analysis and its influence on possible biased 
study results) Uenal et al. (2014b), “black numbers” 
regarding hidden observations or even fraud (i.e. 
finances) Cecchini et al. (2010). The easily applied law 
uses the first digits of numbers of any kind (decimal 
numbers, medical measurements, financial data), 
from 1 to 9.

In combination with missing data (MD) in the data 
matrix, the BL still can be applied by replacing 
the missing values first by multiple imputation 
or an appropriate missing data method, see 
Uenal et al. (2014b). At the same time, the reliability 
of automatically replaced values is evaluated using 
significance tests such as the Chi‑squared to test 
for differences between the distributions, the BF 
distribution and the distribution of the same 
variable of interest with the imputed values.

Further methods have been suggested by 
others, such as multivariate analysis or cluster and 
discriminant analysis (Bredl et al., 2008), which are 
not further described.

The Benford Approach to Determining Data 
Quality

The BL underlay the observation that the digits 
1 – 9 (each as an initial digit) are not equally 
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distributed. According to BL, a lower digit is more 
likely to occur at the beginning than a higher 
digit. The astronomer and mathematician “Simon 
Newcomb” first observed the phenomena in 
1881, when he noticed that first pages of logarithm 
tables were more intensively used than other 
pages (Fewster, 2009; de Vocht and Kromhout, 
2012). “Benford’s Law” was born in 1938 after years 
of oblivion, when Benford described the digits 
observation in his paper analysing various data 
sets, see Benford (1938). Proof was produced by 
the American mathematician Theodore Hill who 
also came up with the practical application; see Hill 
(1995a, 1995b).

The BL as well as the underlying distribution 
can be applied to random data sets and any type of 
data sets with any variable of interest. Manipulated 
data sets are affected by natural human coding 
mistakes, mistakes in the data collection stage, 
transfer errors, fraud or the handling of missing data 
(whether deleted complete observations or replaced 
inappropriately). Such data differ from the natural 
Benford distribution resulting in low data quality 
at the same time (de Vocht and Kromhout, 2012). 
The method even helps in registry quality questions, 
determining the first digits and detecting the total 
size of the missing observations. Although the BL 
is evasive, the law has been widely applied by many 
researchers, but at the same time it has still not been 
satisfactorily explained, see Fewster (2009).

Generally for the k first digits, consider a set 
of data, which is Benford distributed, then 
the probability that a digit d with a basis B in the n’th 
place from the beginning is as follows:
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Which means in more detail that numbers in 
a variable that is following BL, when the leading 
digit d ∈ 1, …,9 occurs with a probability p(d).

One of the special advantages in the properties 
of BL is that the BL can be applied to any kind of 
data. In the case of decimal values, the next possible 
digit is used. The law is valid in any field of research 
where numbers in a variable can be summarised by 
their first digit. Unfortunately, the method does not 
function for binary or category data, see Judge and 
Schechter (2009).

The evaluation of data quality for each of 
the variables “CRP”, “CEA”, “CA‑199” and “CA‑724” is 
estimated by their extent of divergence from the BL 
rates and the observed rates. Then the common 
Chi‑squared goodness of fit significance test is 
conducted to investigate the level on BL‑accordance:
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where obsd is the observed counts of the digits d 
and bld the expected BL counts. Depending on 
a significance level of 0.10, 0.05 or 0.01, the cut‑off 
values are known as χ2 = 13.36, 15.51 or 20.09 and 
considered significant, when χ2 is then the critical 
threshold for the χ2 test with 8 degrees of freedom 
(Judge and Schechter, 2009). It is important to note 
that distribution of the χ2 test statistics is asymptotic 
χ2 distribution only. Observed counts should be 
large enough for reasonable results; in the context 
of our task it is necessary to check this assumption 
especially in the case of a short study period.

Handling Missing Data
Missing values are a common problem in medical 

research and may be a considerable source of bias 
when ignored or not handled appropriately, see 
Uenal et al. (2014b). Especially in quality questions, 
decisions on handling MD are at the same time 
decisions on potential financial consequences.

There are several MD approaches which have 
to be distinguished. Imputation of missing values 
should increase the quality of a registry, since 
deleting registry observations with missing values 
could manipulate the representativeness of patient 
data, Uenal et al. (2014b). Before applying an 
algorithm, one has to distinguish between the MD 
mechanisms. The “Missing Completely At Random” 
(MCAR) mechanism is suitable when the probability 
of missing data is unrelated to covariates and 
the values of the target variable. “Missing At 
Random” (MAR) is useful when the probability 
of missing data could be related to covariates, but 
not to values of the target variable. “Not Missing At 
Random” (NMAR) describes both, the probability 
of missing data relates to unobserved values of 
the target variable even after control for covariates. 
It is useful for example if a person suffering from 
depression does not respond to questions on his 
mental health, see Uenal et al. (2014b).

Economic Aspects: Quality Improvements and 
Cost Differences

Quality improvements leading to high data 
quality by applying BL considering initial data 
collection criteria are evaluated, see Glicklich et al. 
(2014). Any improvement in the data (patient data 
matrix) compared to the quality at the beginning is 
considered and after statistical methods have been 
employed describing the extent of improvement 
between the original quality and the improved 
quality. The cost differences are calculated then 
based on typical monthly study costs.

To keep a main overview of the costs K, creating 
a cost function with influencing variables, we keep 
mainly variable costs and fixed costs. Generally, 
the fixed costs are defined monthly having the same 
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costs every month. Variable costs are defined as 
changing costs (cannot be summarised monthly 
by the same amount). The cost function is thus 
investigated including all cost changing factors in 
the whole variating interval (in our case several 
kink points). Therefore, the function we set for cost 
saving investigation is different to proportional 
cost functions (only one influencing variable with 
a constant slope) or the fixed cost function. We 
propose the following scheme of cost function:

10 4

,
1 1 1

i

t

G M i j
i i j

K F t F x
= = =

= + +∑ ∑∑ ,

where x1,j means Working students or assistants 
in month j (total monthly working hours in €), 
x2,j means Medician in month j (probands; total 
monthly attended probands in €), x3,j means Medical 
management costs in month j (total probands 
monthly in €), x4,j means Management costs – study 
nurse in month j (total probands monthly in €) 
and t is number of months of study duration. 
The variables x1,j,…,x4,j are observed monthly. 
Further, FG⬚

 means study‑specific purchases 
and reserves and FMj covers total consumables 
and the monthly fixed costs, where FM1

 relates to 
Professors, FM2

 to Scientists, FM3 to Data Managers, 
FM4 to Disease specialised medicians, FM5 to Medical 
assistants, FM6 to Disease specialised assistants, FM7 to 
Cost of materials (including medical and biological), 
FM8 to Total consumables (probands), FM9 to Other 
operating expenses and FM10

 to Management costs of 
the project. The created function is applicable to any 
study design. For instant, in a typical case‑control 
study, healthy probands are also collected to 
compare healthy people with diseased patients 1:n 

(matching 1 patient to n probands). Considering 
possible study designs, possible cost advantages are 
investigated more intensively. For a given t we wish 
to estimate cost function of the form

K = β0 + β1x1 + … + β4x4 + β5FM ,

where 
10

1
iM M

i

F F
=

=∑ .

The cost analysis as well as the cost function were 
estimated using statistical software R.

RESULTS

Original data set characteristics
Concerning the study of Ma et al. (2015), several 

advantages, disadvantages and complications in 
the stage of data collection and the study itself were 
published and confirmed by the underlying data 
matrix (for summary information about the data 
see Tab. I). The quality of data completeness on 
the one hand can be seen in “action required”, 
since only patients who fulfilled the full criteria 
were included and patients without follow‑up 
data were excluded. On the other hand, there are 
several MD in the analysis, which can influence 
data quality and thus the study results as well as 
the finances. Although there was some missing 
data, the researchers included and investigated 
in all conscience their data. A control group was 
used for data validation. The small number of cases 
and the high rate of MD in several variables led to 
complications resulting in a quality that possibly can 

I: Summary of current situation of data quality criteria

Quality Criteria Comments

Data Completeness

Only patients who fulfilled the criteria were included; patients without complete 
follow‑up data were excluded;
The total number of missing including excluded cases is unknown. No analysis of 
completeness.

Missing Data MD in the variables CRP, CEA, CA‑199 and CA‑724 and in 2 of them more than 25 % 
missing

Covariate Collection Investigation of all risk factors

Data validation Comparison group

Data manipulations
(intended/unintended) and 
accuracy

No analysis of data quality

II: Descriptive statistics of the raw data

Variable Missing data 
( %) MIN MAX MEAN MEDIAN SD

CRP 101 (26.2) 2 19 9.0 6.0 8.9

CEA 16 (4.2) 1 995 674.4 777.5 299.4

CA-199 58 (15.1) 5 11620 2855.9 743.0 4361.9

CA-724 110 (28.6) 1 1169 767.6 776.0 192.5
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bias results and expand finances. In the subsections 
we will investigate if the exclusion of persons and if 
missing values influenced the data quality as well as 
the study costs.

For all variables, MD was observed with 
26.2 % for the CRP, 4.2 % for the CEA, 15.1 % for 
the CA 199 – and 28.6 % for the CA‑724 variable. 
The stated missing values are intended to be multiple 
imputed in the next sections and compared by their 
data quality using BL, when ignored. The current 
quality of MD (over 25 % of missing values in 
2 variables) signals in advance the possible influence 
of suffering data quality. The first impression of 
the variables including the level of missing data is 
described in Tab. II.

Analysing the first digits, data quality is evaluated 
in detail by stars (poor data quality is assumed when 
at least in one digit no star was achieved).

Ignoring the missing values of 26.2 % in 
the CRP‑variable, there are no anomalies in 
the observed frequencies obsd from the BL expected 
frequencies bld. After computing in detail for 
every digit, the χ2 test resulted in not significant 
neither at 5 % significance (χ2 = 4.2 < 15.51) nor at 
10 % significance, (χ2 = 4.2 < 13.36). Summarising 
the given data quality points for all digits, really 
good quality is assumed and even the 26.2 % missing 
data did not affect the overall data quality.

Concerning CEA, the Benford approach yielded 
that the data quality is clearly more action required 
as for the CRP‑variable. Ignoring the missing values, 
part of the Benford frequencies differed extremely. 
For digit 2, χ2 = 15.781 and so is significantly different 
from the BL distribution (5 % level). After detailed 
computing of χ2 for every digit the test result summed 
up for all 9 digits shows significant differences from 
BL distribution at 1 % level (χ2 > 20.09), what means 
that really poor data quality is counted in this case. 
A detailed analysis however shows that aside from 
digit 2, the other digits seem to be within range. 
The overall data quality gain therefore is still 1 point.

In CA‑199, very poor data quality is observed. 
A detailed view of each digit showed that digit 
6 especially was expected to be lower than observed, 
where the other digits did not yield a significant 
χ2, the χ2 test was even highly significant with 
χ2 > 20.09. Part of the Benford frequencies differed 
extremely. Compared to the Benford distribution, 
the distribution of the original data was highly 
significant. Summed up the squared differences for 
all digits, the overall χ2 – value yielded 51.703 and 
was highly significant considering that the cut‑off 
value for the 1 % significance level is χ2 > 20.09.

CA‑724 did not show any anomalies detailed for 
each digit, but summed up for all digits, the overall 
χ2 test was highly significant at the 1 % level with 
(χ2 = 55.35 > 20.09) . The variable has 28.6 % MD, 
which could contribute to the result.

Handling Missing Data – original data set
It is important to use the comprehensive 

decision‑making algorithm to find an appropriate 

MD method and in order to estimate the missing 
values. For the variables “CRP”, “CEA”, “CA‑199” 
and “CA‑724”, ignorable missing data is assumed, 
since no systematic missing data was observed. For 
all four variables, at least MAR as a MD mechanism 
is suitable. Since the variables are of a continuous 
scale level, the algorithm led to the left side of 
the decision tree. For both MD pattern (monotone 
and arbitrary), the MCMC method (Markov Chain 
Monte Carlo) is suggested. MDs were therefore 
imputed by the MCMC method using NORM 2.03 
software (Schafer et al., 1999).

The investigation of the Benford approach with 
imputed values yields that the variable CRP still had 
good data quality. Considering the 26.2 % of replaced 
MD, summing up χ2 – values for all 9 digits, χ2 was 
over 2 times higher, but still was not significant 
even at a 10 % significance level. In comparison 
with the Benford distribution, the distribution of 
the original imputed data was as before detailed 
for every digit as being of very good quality. 
Especially for this variable, the comparison from 
the Benford signals a low influence of missing vales 
or even missing patients in the study. Although 
data was collected over a study period of 6 years, 
the quality seemed to be stable constantly over 
the time concerning the variable CRP. The digit 1 
was observed 5 times more with imputed MD. This 
could be a signal of missing patients who did not 
meet the inclusion criteria.

In CEA, the investigation of the Benford 
approach yields the same results as with 4.2 % 
MD. After the missing values were replaced, 
Benford frequencies again yield significantly 
less data for digit 2. Accordingly χ2 for digit 2 is 
significant with χ2 > 15.51. Summed up for all digits, 
χ2 = 38.83 > 20.09 and so was highly significant. 
The poor quality signals a high influence of missing 
patients. Probably this is at least partly the influence 
of patients who were excluded from the study, but 
not the influence of MD as we see.

The data quality in CA‑199 only improved 
slightly, but in total the quality remains very 
poor signalling that besides missing values other 
factors could have influenced the overall quality 
considering also the representativeness. Comparing 
the Benford distribution from the original imputed 
data distribution, digit 6 again showed significant 
anomalies of χ2 = 19.165 > 15.51. The overall χ2 
summed up for all digits was again highly significant 
with χ2 = 49.066 > 20.09.

For CA‑724 an immense improvement in data 
quality was observed. After the 28.6 % MD were 
replaced, the χ2 statistical value (summed up for 
all digits) was reduced greatly from χ2 = 55.35 to 
χ2 = 21.60. The value is of high significance at 1 % 
(χ2 > 20.09), but the 5 % significance level limit 
value came a lot closer. Nor did a detailed analysis 
of each digit’s χ2 yield any anomalies. The variable 
showed a high degree of influence of quality caused 
by missing data. Other factors, such as human 
coding or data entry manipulation (intended or 
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unintended) or missing patients in a study due to 
exclusion criteria still influence data quality. The fact 
of “handling MD” shows especially in this case 
the importance of correct handling, which allows 
a good chance to completely improve its data quality 
examining a reduced study period. Properties of all 
variables after imputation using this method were 
the same as before imputation.

Handling Missing Data – reduced study 
period

Using the same data set presented in the previous 
section with imputed missing data means that 
by using the appropriate MD method (MCMC 
chosen by the comprehensive decision‑making 
algorithm) for the variables “CRP”, “CEA”, “CA‑199” 
and “CA‑724”, an increased level of data quality is 
observed as the study period is reduced. Reduction 
of the study period in years means reducing at 
the same time missing or unrecorded patients 
and improves the representativeness of data. To 
demonstrate in detail changing key values, results 
are presented for a study period of three years (half 
of the observations with n = 193 patients) assuming 
that the original data set with 385 patients were 
recorded chronologically.

In the variable CRP, the investigation of 
the Benford approach with imputed values reducing 
the study period to three years yielded indeed still 
good data quality as expected. Summing up all 9 
digits’ χ2 values, χ2 was higher, but still not significant 
even at a 5 % significance level. The comparison 
from the Benford signals still a low influence of 
missing vales or even missing patients in the study 
concerning the variable CRP. Although data was 
collected over a study period of 6 years, the quality 
seemed to be stable even at half of the study period. 
The digit 1 was observed more frequently. This 
could be a signal of still missing patients (inclusion/
exclusion criteria).

To demonstrate in detail changing key values, 
results are presented for the years of the study 
period (half of the observations with N = 193 
patients) assuming that the original data set with 385 
patients were recorded chronologically.

Concerning CEA, a study period of 6 years yielded 
the same results as for only three years. Benford 

frequencies again had less data for digit 2, but 
improved accordingly from 16.26 to χ2 = 12.99 for 
digit 2. Summed up for all digits, χ2 = 3.61 < 20.09 
and still was highly significant. The poor quality 
signals the still high influence of missing patients. 
Although the reduction of the study period did 
not yield as high an improvement as expected, 
the quality of data shows an improvement in 
the detailed investigation of the first digit.

For CA‑199, the data quality improved greatly, but 
in total the quality remains very poor, confirming 
the assumption of other factors that could have 
influenced the overall quality considering also 
the representativeness. Comparing the Benford 
distribution from the original, digit 6 is highlighted 
again with significant anomalies of χ2 = 25.30 > 15.51 
therefore earning no star. The overall χ2 summed up 
for all digits improved to χ2 = 39.15 > 20.09 instead 
of χ2 = 49.07, but both χ2 – values still remain highly 
significant on halving the study period.

As previously assumed, the variable CA‑724 
signalled a good chance to improve quality 
immensely. The investigation of the Benford 
approach with imputed values confirms 
the assumption as expected. The χ2 statistical value 
(summed up for all digits) reduced greatly from 
χ2 = 55.35 to χ2 = 21.60 after replacing 28.6 % MD and 
again improved greatly after reducing the study 
period to three years in total to χ2 = 9.83 < 13.36. 
This value is not significant anymore resulting even 
very good data quality. The quality of the variable 
was influenced possibly by a high degree of missing 
data and possibly also by many missing patients 
or other factors, such as data entry manipulation 
(intended or unintended). The fact “handling MD” 
and possible profits from cost savings in reducing 
the period show accordingly the great need for 
correct data handling given the additional cost 
saving advantages.

Economic aspects: Quality improvements and 
the cost differences

According to the results, the data quality shows 
good quality after reducing the study period, 
assuming that the underlying study can be 
shortened. By shortening the study period up to 
the half of the costs could be saved.

III: Comparison of significance testing with original and imputed missing values (study period: 1, 2, 3, 4 and 6 years).

χ2

(study period)
Original Data Imputed Data

CRP CEA CA-199 CA-724 CRP CEA CA-199 CA-724

χ2 (6 years) 4.19*** 35.61 51.70 55.35 10.17*** 38.83 49.07 21.60

χ2 (4 years) 6.14*** 27.64 36.79 33.70 10.70*** 31.20 35.08 12.69***

χ2 (3 years) 4.92*** 30.17 41.91 23.79 14.11** 33.61 39.15 9.83***

χ2 (2 years) 3.48*** 17.04* 17.30* 15.11** 6.76*** 19.11* 16.64* 6.93***

χ2 (1 year) 5.07*** 2.23*** 8.72*** 10.13*** 9.37*** 2.62*** 6.74*** 2.41***

***Data quality is very good (χ2 < 13.36 => not significant at 10 %‑significance level). **Data quality is good (χ2 < 15.51 => not 

significant at 5 %‑significance level). *Data quality is moderate (χ2 < 20.09 => not significant at 1 %‑significance level). No 

star: very poor.
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Average study‑related costs are defined by 
experience in real life studies and are set as 
constants or variables to measure the cost 
differences in order to investigate cost advantages 
(or disadvantages). The costs defined are suggested 
as generally replaceable with any reasonable values; 
nevertheless the expenditures and outlays in Tab. IV 
are reliable and coming from real experience.

The costs are calculated depending on the study 
design considering costs per patient and if needed 
additionally per proband. Regarding the variable 
x1, let the total number of observed patients be p in 
the first month and the working hours per working 
student be 2 hours per patient (e.g. study specific 
preparations and materials), then the first value of 
the variable (first month) is €150 (€15/h × 2 h × p; 
p = 5). In a study design, where 1 patient is matched 
by 2 healthy people, we have €450 for the first 
value ((€15/h × 2 h × p) × 2 + €15/h × 2 h × p; p = 5). 
Considering the variable x2, the first value for 
the first month is €1800 ((€120 × p) × 2 + €120 × p) 
for the total number of patients attended by 

the medicians (study specific medical treatments), 
analogously for x3 and x4 with €1500 and €1050. 
Summarising for one month, FM includes in total 
€53,800. Regarding the variable costs, the total 
amount of monthly expenditures depends on 
the number of hours worked as well as across 
the board costs per patient (and probands). Because 
of signals that patients are not included in the study, 
additional costs were included considering 
the observed number of patients in the study period 
of 6 years. The monthly number of patients was 
assigned for the cost function randomly between 5 
to 10 patients in a month set by observed experience. 
All surrounding costs were then included per 
assigned patient.

The multivariate cost function with 
the influencing independent variables x1, … ,x4 
resulting in total costs K as a dependent variable 
was reduced to only two summarised independent 
variables and has the following form:

K = 13.000 + 10.67 x1 + FM.

IV: Summary of study-related costs (per month).

Outlay*

Estimated 
costs** (Euros)
on average per 

month

Comments

Professor 6000 At least 1 scientist

Scientists 5000 At least 1 scientist

Data manager 5000 At least 1 data manager

Working students or assistants 100 hours × 15

Medicians and Medical employees

Medician (probands) 120 × proband At least 1 medician

(Disease specialised) medician 5000 At least 1 medician

Technical administrative employees

Medical assistants 4000
At least 1 assistant
(per example study nurse)

(Specialised) Medical assistants 4000
At least 1 assistant
(per example in the laboratory)

Properly direct costs

Cost of materials (including medical 
and biological) 1500 food, medical care needs, devices and other materials

Consumables of probands

Total Consumables 2000
Pre‑analytics, shipping, laboratory, pharmacy economy 
needs, MRI, analytics virology, microbiology, pathology, 
transfer and other expenditures

Ground costs (study begin)

Total Consumables 3000 Travel, meetings, publications and other expenditures

Other operating expenses 1000
Administrative requirements, CEO supplies, maintenance, 
other ordinary expenses

Other outlays

Management costs – project 2500

Management costs – medicians 120 × proband per proband

Management costs – study nurse 70 × proband per proband

*Pre‑calculation design of medical projects (an extract by the Clinical University of Frankfurt, Germany). **Suggested 
costs on average set by experience (Brutto (€); case‑control study, University Ulm).
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The fitted parameter estimate yields the same 
results generating 1999 bootstrap replicates of 
the regression coefficients (see Tab. V).

According to all independent variables, the costs 
reduce from about €3,138,760 (6 years study period) 
to €535,240 (one year study period). After ensuring 
statistically that data quality is reliable for reducing 

study period for 2 or 3 years, what reducing also 
the number of excluded patients in the study, study 
costs reduces still to €1,055,560 or €1,582,600. This 
is about half of the original costs; it is visible that 
savings due to improved data quality are significant, 
and study results of any research question still have 
high quality.

V: Summary of bootstrap statistics: Fitting the cost function.

Fitted Original Bias*  SE* Med* Skew* Kurtosis*

Intercept 13000 7.7489e‑10 8.6162e‑10 13000 0.047942 0.31166

V1 10.67 −1.1724e‑13 2.0352e‑13 10.67 0.324086 3.17978

FM 1 1.6653e‑15 3.8472e‑15 1 −0.356306 0.24296

*Bootstrapped.

VI: Total summed up fixed and variable costs (one to six years)

Variable Costs Number of 
months MIN MAX MEAN MEDIAN SD

K (6 years) 72 months 53800 3138760 1600426.67 1603960 907313.78

x1 12 months 450 50040 25633.75 25965 14431.58

x2 12 months 1800 200160 102535 103860 57726.32

x3 12 months 1500 166800 85445.83 86550 48105.26

x4 12 months 1050 116760 59812.08 60585 33673.68

FM 12 months 36000 2592000 1314000 1314000 753424.18

K (4 years) 48 months 53800 2108680 1080840 1077880 609629.09

x1 12 months 450 34470 17422.5 17145 9904.64

x2 12 months 1800 137880 69690 68580 39618.58

x3 12 months 1500 138000 58075 57150 33015.48

x4 12 months 1050 80430 40652.5 40005 23110.84

FM 12 months 36000 1728000 882000 882000 504000

K (3 years) 36 months 53800 1582600 819266.67 821080 457997.65

x1 12 months 450 25650 13150 13320 7381.87

x2 12 months 1800 102600 52600 53280 29527.5

x3 12 months 1500 138000 43833.33 44400 24606.25

x4 12 months 1050 59850 30683.33 31080 17224.37

FM 12 months 36000 1296000 666000 666000 379283.54

K (2 years) 24 months 53800 1055560 558720 558040 308102.39

x1 12 months 450 16740 8973.75 8910 5023.52

x2 12 months 1800 66960 35895 35640 20094.06

x3 12 months 1500 138000 29912.5 29700 16745.05

x4 12 months 1050 39060 20938.75 20790 11721.54

FM 12 months 36000 864000 450000 450000 254558.44

K (1 year) 12 months 53800 535240 296920 297400 158004.86

x1 12 months 450 8460 4680 4725 2646.84

x2 12 months 1800 33840 18720 18900 10587.36

x3 12 months 1500 138000 15600 15750 8822.8

x4 12 months 1050 19740 10920 11025 6175.97

FM 12 months 36000 432000 234000 234000 129799.85
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CONCLUSION
Summarising the main results, the data quality examined by BL conformed to assumptions. After 
initial observation of over 25 % of MD in some variables, it seemed almost impossible to consider 
reduced study duration. Too many observations had MD. One assumed a need to prolong the study 
period to avoid unreliable results. The consequence was incurring over half of the really needed study 
costs. With this work, a detailed investigation could show that the quality of data and thus the study 
results were even improved, shortening over half of the duration and costs, too.
Analysing the study originally performed by Ma et al. (2015) from the year 2000 to 2012 with 385 
patients, the examined data quality suffered in reliability. Excluding patients from the original data 
matrix even signals additionally that the representativeness of the observed data suffers. Handling 
MD correctly by statistical imputation methods as well as realising the financial advantages means 
saving time and costs and at the same time improving data towards reliable representativeness and 
study outcomes. Results regarding quality analysis show that there are clear savings of millions in 
study costs by reducing the time horizon.
Missing values were observed in all investigated variables. By replacing MD of over 25 % MD in some 
variables (26.2 % for the CRP, 4.2 % for the CEA, 15.1 % for the CA‑199, and 28.6 % for the CA‑724), 
the data quality was immensely improved, except for one variable (CRP still showed in the beginning 
good quality, even without MD imputing of 26.2 % missing data). Conversely the other variables with 
moderate to poor data quality were all summarised as improved after statistical input.
In Euros, you save in average €523,126.70 for every reduced year. Compared to a six‑year study period, 
the cost reduction to a one‑year period is about 83 %. Although the cost reduction is enormous, a study 
period of only one year is not reliable and the data quality even has the tendency to become worse due 
to the short period of time. Reducing by more than four years, over 66 % of costs are saved, but unlike 
increasing further there is a positive effect on quality. Reducing by three years still has a cost saving 
effect of 50 % which is roughly the expected half of the costs.
The time reduction is proportional to the cost reduction. This fact seems even more important when 
the previously stated results even have the side effect of a data quality improvement.
The quality of the original data varies from variable to variable. While the variable CRP seems to be 
very stable before and after the improvement process, the other variables show some difficulties in 
the BL deviation comparison. The BL deviation was expected especially in the variable CA‑199 digit 6 
significantly less than observed evaluating. But replacing MD in a second step, the same digit shows 
significant results assuming good quality for the digit 6 in the deviation. However summing up all 
the digits, the overall evaluation differs for the variable, since χ2 is still greater than 20.09 (significant 
at a 1 % significance level).
Although MD methods are not able to bring all the data back, the knowledge that every poor data 
registry can be solved ex‑post is important. However, the study period should not be reduced too 
much. There should be a reasonable balance and emphasis between data quality and the study period.
CARE based methods could give further information about investigating the number of excluded 
patients as a possibility to confirm signals of data quality suffering. To avoid a certain bias which was 
observed in several studies, the log‑linear model controls the dependencies of multiple data sources 
as an additional advantage of this approach, see Chao et al. (2001).
Because there is not any information on the exact number of monthly observed (or not observed) 
patients, patients (per month) were randomly assigned (Poisson deviation) for the cost function 
between 5 to 10 patients (assumed by experience). The cost function includes additional possible 
probands causing costs (independently from the study data source Ma et al. (2015) matching two 
assumed probands to randomly assigned patients – 1:2 matching.
Registry quality depends on several modalities including the researcher’s working behaviour itself, 
which all influence the total end costs, see Tab. I. Suggestions regarding how to plan and conduct 
a study are essential regarding consideration of hidden costs, see Nagel et al. (2012) and (2013). 
The basic rule is generally besides a well‑chosen study design a good detailed plan in advance to keep 
surprising costs within an acceptable range. This includes standardised study‑specific procedures, 
carefully handling data collection in a standardised manner for all study participants. Also following 
the international quality standards is essential in the stage of data collection process and earlier 
in the planning phase. One of these points is controlling questionnaire items and responses from 
the beginning. This allows – when needed – to recall or re‑ask for items not responded to. Up to two 
weeks recalling not responding participants are much cheaper than excluding patients completely at 
the end of the study.
In the study of Ma et al. (2015), the total number of unknown missing patients seems to be so high 
that the BL analysis even signalled anomalies (not only caused by missing values). A percentage of 
these excluded patients possibly could be solved by providing an extract of all important variables 
anonymised when no improved consent is available or with the help of the state (declaration of 
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clearance, ethical committee; comparable the successful implemented ALS study), see Nagel et al. 
(2012) and (2013).
Our findings concerning the study Ma et al. (2015) show clearly the importance of data quality and 
analysis in order to take possible study results with highest carefulness to avoid biased conclusions 
due to incomplete data.
Regarding MD, the decision for the chosen MD method is another important point concerning 
increased study costs caused by impaired data quality. The decision‑making MD algorithm helps 
to determine a reliable MD mechanism and to consider the scale level of the target variable. Many 
methods are very complex and the imputing of a large fraction is difficult. On the other hand they are 
important since a complete case analysis often leads to the loss of much observed data. The number of 
different algorithms and the fact that no software combines all the existing ones increases the difficulty 
of finding the right approach. Therefore the decision algorithm makes possible orientation in different 
MD situations.
In this research, at least the MAR mechanism was assumed and the MCMC method was chosen to 
replace MD as the most suitable. As shown in Tab. IV, all examined variables improved their quality 
after MD imputation. The replaced values are reliable, since a scenario of missing and pretended 
missing values was investigated. The pretended missing values yield similar and almost equal values 
so that suspect unreliable replacements is not considered as a possible error source (or not seriously). 
Only very low values (decimal numbers below value 1 of the pretended missing values was estimated 
as too low (even often under “−100”), but was still not considered serious. The MD imputed χ2 values 
improved the data quality extremely. The χ2 value improved about 61 % for the variable CA‑724 in 
a study period of 6 years and even 76 % in a study period of one year.
The variable CRP never suffered from MD or data quality as observed in other variables. Although the χ2 
value tended to rise, it rose without falling under the 5 % significance level. While the improvement 
after MD shows a positive effect, the study period itself is an important quality point, too, assuming 
not only a reduction in the study period, but also reducing possible missing patients in the data matrix.
Independent of MD handling, just by reducing the study period to only two years of data collection, 
the overall χ2 value improved for all variables on average by over 64 % (and more when reducing still 
further to one year) independent of MD handling. So with both together, reducing the source of bias 
and years of costs, study costs can be saved doubtless after reliable statistical ensuring over 66 % Euros 
or further counting only one year 83 % maximally from 3.138.760 Euros (SD = 907,313.78 for 6 years) 
to maximally 1,055,560 Euros (SD = 308,102.39 for 2 years) or maximally 535,240 (SD = 158,004.86 for 
1 year).
The distinction between fixed and variable costs depends on the studied amount and time. The more 
variables and decisions in the study considered, the more variable costs must be included in 
the calculation. Generally seen, the time horizon is a sensitive point. The shorter the study period, 
the better the data quality and the total study costs in the end. The cost function and detailed costs 
summed up per patient show how actions additionally influence the cost calculation and their 
dependency, but although the quality improves when the time horizon gets shorter, one should 
consider also that conversely certain knowledge can be found only with a longer time period (even 
when the data quality decreases).
Returning to the BL analysis, BL has proven to be a suitable approach to measure the quality and 
reliability of study results. Besides supporting decisions to reduce the study period and save costs, 
BL also helps to detect manipulation in the stage of data entry. The applicability is widely used and 
depends on specific issues: Investigating data quality (any kind of data) and is suitable for the sensitive 
purpose (e.g. the pharmaceutical registry), survival distribution research (Leemis et. al., 2000), biased 
conclusions in survey data (Judge and Schechter, 2009), management manipulation (Archambault 
and Archambault, 2011) or data fraud detection (Tam et al., 2007).
Still, the disadvantages of BL are that investigation of categorical or dichotomous data is not possible. 
BL can further find signals that patients are missing in a data matrix, but cannot estimate the total 
number of missing patients (as with CARE techniques). Whereas an outlook could be to create 
artificial patients as phantom‑patients replacing missing patients and their values for variables 
and analyse again by means of BL. Distance‑based methods can also be chosen to expand the idea 
of phantom‑patients by only given information, which is the location (geographical coordinates of 
existing observations).
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